HANDOUT E.28 - EXAMPLE HANDOUT ON COMPENSATION USING ROOT LOCUS

Example 1:

Design a lead compensation for the system given by the transfer function

 $G(s) = \frac{1}{s(s+1)}$, that will provide a closed-loop damping $\zeta > 0.5$ and natural frequency $\omega_n > 7$ rad/sec.

Sol: The general transfer function of a lead compensator is given as

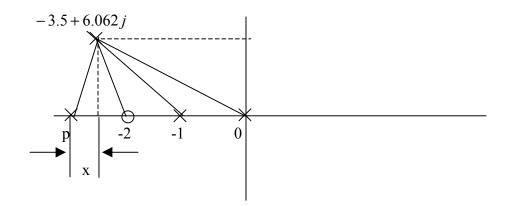
$$D(s) = K \frac{(s+z)}{(s+p)}, \quad p > z.$$

Let us design for the limiting condition of the damping ratio and natural frequency. Therefore let us choose $\zeta = 0.5$ and $\omega_n = 7$ rad/sec. Hence the closed loop poles of the system are given by

$$-\zeta \ \omega_n \pm j\omega_n \sqrt{1-\zeta^2},$$

= -3.5 ± j6.062

Let us choose z = 2. The angle subtended by all the poles and zeros of the feed forward transfer function, with the closed loop pole at -3.5 + 6.062j is



 $-\theta_p - 112.41 - 120 + 103.898$. This angle must be equal to -180 degrees. Hence the angle subtended by the compensator pole with the closed loop pole is 51.488 degrees.

Therefore,

 $\tan(51.488) = \frac{6.062}{x},$ $\Rightarrow x = 4.824.$

$$p = x + 3.5 = 4.824 + 3.5 = 8.324 \approx 9.$$

To calculate the gain K, we have

$$1 + D(s)G(s) = 0,$$

$$\Rightarrow |D(s)G(s)| = 1$$

$$\Rightarrow \left| K \frac{(s+2)}{(s+9)} \frac{1}{s(s+1)} \right|_{s=-3.5+6.062j} = 1,$$

$$\Rightarrow K \approx 60.$$

Hence the lead compensator is given by

$$D(s) = 60 \frac{(s+2)}{(s+9)}.$$

Plotting the root locus of the feed forward transfer function given by D(s)*G(s), the specification of the location of the location of the closed-loop pole can be verified.

Example 4:

Consider the system whose feed forward transfer function is given by

 $G(s) = \frac{K}{s(s+2)}$. Design a lag compensator so that the dominant poles of the closed loop system are located at s = -1 ± j and the steady state error to a unit ramp input is less than 0.2.

Sol:

The general transfer function for lag compensation is given by

$$D(s) = \frac{(s+z)}{(s+p)}, \quad p < z$$

The forward transfer function is given as

MEEN 364 Lecture 28 Parasuram Nov 24, 2001

$$G(s) * D(s) = \frac{K}{s(s+2)} \times \frac{(s+z)}{(s+p)}.$$

For the specification that the steady state error of the system must not exceed 0.2, we have

$$E(s) = \frac{s(s+2)(s+p)}{s(s+2)(s+p) + K(s+z)} R(s),$$

$$\Rightarrow e_{ss} = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s \left[\frac{s(s+2)(s+p)}{s(s+2)(s+p) + K(s+z)} R(s) \right].$$

For a ramp input, we have

$$e_{ss} = \lim_{s \to 0} s \left[\frac{s(s+2)(s+p)}{s(s+2)(s+p) + K(s+z)} \right] \frac{1}{s^2} = \frac{2p}{Kz} < 0.2.$$

Let $\frac{2p}{Kz} = 0.2$

Let us choose p = 0.01, therefore we have

$$Kz = 0.1$$

We know that, the closed loop poles lie in the root locus and hence

$$1 + D(s)G(s) = 0,$$

$$\Rightarrow K = -\frac{1}{D(s)G(s)}\Big|_{s=-1+1j},$$

$$\Rightarrow K = -\frac{s(s+2)(s+0.01)}{(s+z)}\Big|_{s=-1+j}.$$

Solving for K and z, we get

K = 1.88 and since Kz = 0.1, we get z = 0.0532.

Therefore the lag compensator is given by

$$D(s) = \frac{(s+0.0532)}{(s+0.01)}.$$

Plotting the root locus of the feed forward transfer function, given by $D(s)^*G(s)$, the specification of the location of the closed loop pole can be verified.

MEEN 364 Lecture 28

Recommended Reading

"Feedback Control of Dynamic Systems" 4th Edition, by Gene F. Franklin et.al – pp 310 - 328.

Recommended Assignment

"Feedback Control of Dynamic Systems" 4th Edition, by Gene F. Franklin et.al – problems 5.26, 5.27.