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HANDOOUT E.9 - EXAMPLES ON FLUID, THERMAL AND MIXED
SYSTEMS

Example 1: A thermal system

The following figure shows a simple model of an industrial furnace. A packing of
temperature T1 is being heated in the furnace by an electric heater supplying heat at the
rate Qi(t). The temperature inside the furnace is T2, the walls are at temperature T3 and
the ambient temperature is Ta. The thermal capacitances of the packing, the air inside the
furnace and the furnace walls are Ch1, Ch2 and Ch3 respectively. Derive the state-variable
equations for this system assuming that the heat is transferred by convection only, with
the convective heat transfer coefficients hc1 (air-packing), hc2 (air-inside walls) and hc3
(outside walls-ambient air).

T3, Ch3         Ta

T2, Ch2

T1, Ch1

    Qi(t)

The rate of heat transfer, Q between a solid wall and a fluid flowing over it is given by

),( fwc TTAhQ −=       (1)

where hc is the convective heat transfer coefficient, A is the area of heat transfer and Tw
and Tf represent the wall and fluid temperatures respectively.

Using the above relations for the packing, we have
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Similarly applying the relation for the furnace, we have
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Applying the relation given by equation (1) to the walls, we get
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Equations (2), (3) and (4) represent the governing differential equations of motion for the
above-defined system.

State-space representation

Let the states of the system be defined as
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Substituting the above relation in equation (2), we have
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Similarly substituting the relations given by equation (5) in equation (3), we have
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Substituting the relations given by equation (5) in equation (4), we get
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Rewriting equations (6), (7) and (8) in matrix format, we have
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Example 2: A mixed system

A simplified sketch of a computer tape drive is shown below. Write the equations of
motion in terms of the parameters listed below.

Free body diagram of the take-up capstan

    T

     ω1
Tm

  J1, B1
     r1
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where J1 is the inertial of the motor, B1 is the motor damping constant, Tm is the torque
developed by the motor, T is the tension in the string.

Writing the torque balance equation, we have
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But from the figure it can be concluded that
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We also know that the torque developed by the motor is proportional to the armature
current. Hence

.atm ikT =     (11)

Substituting the equations (10) and (11) in equation (9), we have
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Free body diagram of the idler wheel

  T2
     ω2

  J2, B2
     r2

   F

Writing the Torque balance equation, we get
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But again,
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Substituting equation (14) in equation (13), we get
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From the figure, the following relation can be concluded,
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Equations (12), (15) and (16) represent the governing differential equation of motion.

State-space representation

Let the states of the system be defined as
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Substituting the above relation in equation (16), we have
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Substituting the relation given by equation (17) in equation (12), we have
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Substituting the relation given by equation (17) in equation (15), we have
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Rewriting equations (18), (19), (20) and (21) in matrix format, we have
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Example 3: A fluid system

Introduction

Fluid capacitor

A fluid capacitor is shown in the following figure

   Qc      P1      Pr

   Cf

The pressure in a fluid capacitor must be referred to a reference pressure Pr. The volume
flow rate Qc is given by

,1

dt
dPCQ r

fc =  where Cf is the fluid capacitance.

Fluid inertor

The symbolic diagram of a fluid inertor is shown in the following figure.

   QI
P1     P2
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    I

The elemental equation for the inertor is

,12 dt
dQIP I=  where I is the fluid inertance. For frictionless incompressible flow in a

uniform passage having cross sectional area A and length L, the inertance ,
A

LI ρ=

where ρ is the mass density of the fluid.

Fluid resistor

The symbolic diagram of a fluid resistor is shown below.

QR
P1         P2

     Rf
The elemental equation of an ideal resistor is

.12 Rf QRP =

Problem: Develop the input-output differential equation relating the output pressure to
the input pressure for the fluid system shown below.

For the fluid resistor, we have

.12 Rf QRP =     (23)
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For the inertor, we get

.23 dt
dQIP R=     (24)

For the fluid capacitor,
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Writing the pressure balance equation, we have
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Equation (26) represents the governing differential equation of motion for the fluid
system shown.

State-space representation

Let the states of the system be defined as
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From the above relation, we get
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Substituting the relation given by equation (27) in equation (26), we have
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Rewriting equations (28) and (29) in matrix format, we get
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Assignment

1) The sewage system leading to a treatment plant is shown. The variables qA and qB are
input flow rates into tanks 1 and 2 respectively. Pipes 1, 2 and 3 have resistances as
shown. Derive the state equations.

qA qB

       A1          A2
Tank 1        h1          h2     Tank 2

        R2        Pipe 2
    R1   q2 R3

       q1      q3

Pipe 1 Pipe 3

2) The temperatures of the side surfaces of the composite slab shown below areT1 and T2.
The other surfaces are perfectly insulated. The cross sectional areas of the two parts of
the slab are A1 and A2 and their conductivities are k1 and k2 respectively. The length of
the slab is L.

a) Find the equivalent thermal resistance of the slab and express it in terms of the
thermal resistances of the two parts.

        A1
        k1

        T1           T2

        k2
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         A2

        L
3) Write the equations of motion for the hanging crane shown below. Assume that the
driving force on the hanging crane is provided by the motor mounted on the cab with one
of the support wheels connected directly to the armature shaft. The motor constants are
Ke, Kt and the circuit driving the motor has a resistance Ra and no inductance. The wheel
has a radius ‘r’.
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