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Lecture 1: Modeling of Translational Mechanical Systems

The objective of this lecture is to review the basic building blocks of lumped

parameter translational mechanical systems and to build the foundations that

will enable you to model more complex dynamic systems.

Translational Inertia Elements (or Masses):

Analysis of mechanical systems is based on Newton’s laws of motion. Usu-

ally, ideal (or point) masses are considered in the analysis, as shown in the

Figure 1. Motion is considered with respect to a non-accelerating reference

frame, usually a fixed point on earth or another non-accelerating object.

The equation of motion for a mass m(t) is based on Newton’s second law

which expresses the conservation of linear momentum, as follows:

d(m(t)v1g(t))

dt
=

n∑

i=1
Fi(t), (1)

where if we assume that the mass is constant m, we can rewrite this equation

as

m(
dv1g(t)

dt
) =

n∑

i=1
Fi(t) = Fm(t), (2)

where v1g(t) is the velocity of the mass relative to the ground reference (g)

and Fm(t) is the net force acting on the mass.

Because of the non-accelerating nature of the reference frame

dx1g

dt
=

dx1

dt
, (3)
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resulting in the following equation of motion for the ideal mass m

m(
d2x1(t)

dt2
) = Fm(t). (4)

Furthermore, the action of the applied force represents work being done

on the mass as it accelerates, increasing its kinetic energy. The rate at which

energy is stored in the system is equal to the rate at which work is expended

on it. Using the first law of thermodynamics (or the law of conservation of

energy) we have
dEEEK(t)

dt
= Fm(t)v1g(t). (5)

To find the energy of the system we need to integrate over a period [0, t], as

follows:

∫ EEEK(t)

EEEK(0)
dEEEK =

∫ t

0
Fm(t)v1g(t)dt =

∫ t

0
mv1g(t)(

dv1g(t)

dt
)dt = m

∫ v1g(t)

v1g(0)
v1g(t)dv1g,

(6)

or

EEEK(t) = EEEK(0) + (
m

2
)v2

1g(t). (7)

This is the well-know formula for the kinetic energy of a point mass.

Equation (4) indicates that because of the integrations involved, it takes

some time for the moving object to build-up velocity and displacement. As

such, it would not be realistic to attempt to apply a step change in velocity

(or displacement) of the mass. This would require an infinite amount of force

and an infinite source of power!

Translational Stiffness Elements (or Springs):

An ideal translational spring, stores potential energy as it is deflected along

its axis. This is depicted in Figure 2. The figure shows a spring in its relaxed

state, Fk = 0, and with the force Fk acting at both ends, in free-body diagram

fashion. Because an ideal spring has no mass, the force transmitted by it is
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Figure 1: Free-body diagram of an ideal mass.

undiminished during acceleration. Therefore, the forces acting on its ends

must be equal and opposite (Newton’s third law of motion). The elemental

equation for such a spring derives from Hooke’s law, namely

Fk(t) = k[x21(t)− (x21)0], (8)

where (x21)0 is the free length of the spring. Because x21(t)− (x21)0 = x2(t)−
x1(t) we can write the equation for a spring as

Fk(t) = k[x2(t)− x1(t)], (9)

where x2(t)− x1(t) is the deflection of the spring from its initial free length.

In this development we have assumed that the spring has a constant stiff-

ness, k. If this is not the case, we can write the general form of equation (9)

as

FNLS(t) = fNL(x2(t)− x1(t)), (10)

where NL stands for a non-linear spring. Simplification of this equation, via

linearization, to a spring with an equivalent linear stiffness near an operating

point will be discussed in future lectures.
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Figure 2: Free-body diagram of an ideal spring.

Similar to the case of an ideal mass, we can investigate the energy point-

of-view of an ideal spring. The conservation of energy for an ideal spring can

be expressed as
dEEEP (t)

dt
= Fk(t)v1g(t). (11)

To find the energy of the system we need to integrate as follows:

∫ EEEP (t)

EEEP (0)
dEEEP =

∫ t

0
Fk(t)v1g(t)dt = (

1

k
)

∫ t

0
Fk(t)(

dFk(t)

dt
)dt = (

1

k
)

∫ Fk(t)

Fk(0)
Fk(t)dFk,

(12)

or

EEEP (t) = (
1

2k
)F 2

k (t). (13)

This is the formula for the potential energy of an ideal spring.

As in the case of the point mass, it would not be realistic to attempt to

apply a step change in force to a spring. Such a force would have to move

infinitely fast to deflect the spring suddenly, which would require an infinite
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Figure 3: Free-body diagram of an ideal damper.

source of power!

Translational Damping Elements (or Dampers):

An ideal damper is shown in Figure 3. Because an ideal damper contains

no mass, the force transmitted through it is undiminished during acceleration.

Therefore, the forces acting at its ends must always be equal and opposite.

The basic equation of an ideal damper is

Fb(t) = b(v2g(t)− v1g(t)) = bv21(t). (14)

With a damper there is no storage of retrievable mechanical work, as the

work being done by an applied force becomes dissipated as thermal internal

energy. The relationship between the force and velocity is instantaneous.

Thus, it is realistic to apply step changes of either force or velocity to such

an element.

An ideal damper arises from viscous friction between well-lubricated mov-

ing mechanical parts of a system. This is the only form of damping that is

linear. Non-ideal forms of damping are very common in practice. However,

non-ideal damping is characterized by non-linearities, such as dry (Coulomb)

friction, aerodynamic damping, structural damping. These forms of damp-

ing can be linearized for simplification when no discontinuities exist in the

force-velocity characteristics of the damper, at the expense of accuracy of
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the analysis. Non-ideal damping is found, for example, in poorly lubricated

metal-metal contact surfaces.

In general, for a nonlinear damper we can write

FNLD(t) = fNL(v12(t)), (15)

where NL stands for a non-linear damper. Simplification of this equation, via

linearization, to a damper with equivalent linear damping near an operating

point will be discussed in future lectures.

Example: A Mass-spring-damper System in a Gravity Field:

The system to be analyzed is shown in Figure 4. We apply Newton’s second

law to the mass m, resulting in

Fi(t) + mg − Fk(t)− Fb(t) = m
dv1g(t)

dt
. (16)

The equations for the damper and the spring can be expressed as

Fb(t) = bv1g(t), (17)

and

Fk(t) = k(x1(t) + ∆1 − xg). (18)

Equations (16) through (18) can be combined to obtain the following equation

of motion

m(
d2x1(t)

dt2
) + b(

dx1(t)

dt
) + k(x1(t)− xg) = Fi(t), (19)

where the k∆1 term was eliminated using the mg term. With xg = 0, we

obtain the following second order equation

m(
d2x1(t)

dt2
) + b(

dx1(t)

dt
) + kx1(t) = Fi(t). (20)

This second order system (also called a 1 degree-of-freedom or 1DOF system)

requires two variables to be completely described, velocity and position. We
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Figure 4: Diagram of a mass-spring-damper system in a gravity field.

call these variables the states of the system. This system also has two energy

storage devices, the mass and the spring, exchanging kinetic and potential

energy. The damper is an energy dissipation element.

Reading Assignment

See separate file on textbook reading assignments depending on the text

edition you own. Read the examples Handout E.5 posted on the course web

page.
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