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The objective of this lecture is to introduce the concepts and mathematics

involved in the Laplace transform (LT) and its use in dynamic systems and

controls. LTs will be instrumental in the development of transfer functions

and they will be used throughout this course in the analysis of dynamic

systems and in the design of control systems.

Definition of the Laplace Transform and the Inverse Laplace Transform

The LT allows us to transform functions of time into functions of a complex

variable s and it is a generalization of the Fourier Transform we discussed

last week. It is defined as

F(s) = LLL{f(t)} =
∫ ∞
0

f(t)e−stdt, (1)

where s is a complex variable, s = σ+jω, and f(t) is a continuous function of

time1. For the integral in equation (1) to be computable there must exist some

real numbers A and b, such that |f(t)| < Aebt. Most functions encountered

in engineering are of this form.

The most common use of LTs is to solve ODEs. By using LTs we can

transform ODEs form the t domain into algebraic equations in the s domain.

The algebraic equations are typically easier to solve that the equivalent ODEs.

The solutions of the algebraic equations can then be transformed back to the

time domain using the inverse LT defined by the integral

f(t) = LLL−1{F(s)} =
1

2πj

∫ c+j∞
c−j∞ F(s)estds. (2)

1Furthermore, the function f(t) is assumed zero for t < 0 and the resulting transform is called one-sided LT
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Table 1: Laplace Transforms of Most Common Functions of Time

Continuous Function Laplace Transform
Impulse 1
Step 1

s

t 1
s2

t2 2
s3

e−at 1
(s+a)

te−at 1
(s+a)2

sin(ωt) ω
(s2+ω2)

cos(ωt) s
(s2+ω2)

Typically the definition of the inverse LT is not used in practice. Rather, the

method of partial fraction expansion is used to obtain the inverse LT, as it

will be shown in the examples.

Table 1 below summarizes the LTs of the most commonly used time func-

tions.

Basic Properties of the Laplace Transform

The LT has a number of useful properties that are handy in manipulating

transfer functions of dynamic systems. The most important properties of the

LT are listed below.

(1) Linearity

LLL{a1f1(t) + a2f2(t)} = a1F1(s) + a2F2(s). (3)

(2) Integration

LLL{
∫ t

0
f(τ)dτ} =

F(s)

s
. (4)

(3) Differentiation

LLL{d
nf(t)

dtn
} = snF(s)−

n−1∑

k=0
sn−k−1[

dkf(t)

dtk
]|t=0−. (5)

(4) Shifting in the time domain

LLL{f(t− a)} = e−asF(s). (6)
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(5) Shifting in the complex domain

LLL{f(t)e−at} = F(s + a). (7)

Additionally, the initial and final value theorems associated with the LT

find very useful applications. The initial value theorem can be expressed as

f(0+) = lim
s→∞ sF(s). (8)

The final value theorem allows calculation of the steady-state value of a func-

tion as follows

lim
t→∞ f(t) = lim

s→0
sF(s). (9)

Partial Fraction Expansion Method

See Handout A.2.

An Example

Consider the mass-spring-dashpot system shown in Figure 1. Use the LT

to find the system transfer function from the forcing function F (t) to the

displacement x(t).

The equations of motion for this system are

m
dv

dt
= F (t)− bv(t)− kx(t), (10)

and
dx(t)

dt
= v(t), (11)

Taking the LT of equations (10) and (11) results in

m[sV(s)− v(0−)] = F(s)− bV(s)− kX(s), (12)

and

sX(s)− x(0−) = V(s), (13)

where x(0−) and v(0−) are the initial conditions for displacement and velocity

of mass m just before the force is applied. Now, eliminating V(s) from
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Figure 1: Schematic Diagram of Mass-Spring-Dashpot System.

equations (12) and (13) results in

X(s)(ms2 + bs + k) = F(s) + x(0−)(ms + b) + mv(0−). (14)

Assuming zero initial conditions, the system transfer function is found to be

T(s) =
X(s)

F(s)
=

1

ms2 + bs + k
. (15)

Reading Assignment

Read “Handout A.2: Laplace Transforms” and the examples Handout E.3

posted on the course web page.
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