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Poles and Zeros of Transfer Functions

The objective of this lecture is to introduce you to the basic concepts of

impulse response, convolution integral, transfer functions and block diagrams.

These are the very basic tools for the analysis of linear time-invariant (or

constant) systems.

Convolution and Dynamic Response of Linear Systems

The principle of superposition states that if a system has an input that

can be expressed as a sum of signals, then the response of the system can

be expressed as the same sum of the individual responses to the respective

signals. For example, consider a system with input u(t) and output y(t) and

initially at rest. We apply the input u1(t) and u2(t) and observer the responses

y1(t) and y2(t), respectively. Then we form the input u(t) = α1 u1(t) +

α2 u2(t). If superposition applies then the system response will be y(t) =

α1 y1(t) + α2 y2(t). Superposition is valid only for linear systems.

A simple way to obtain the response of a linear system is to write down

the so-called “convolution integral”. The convolution integral is the result of

applying the principle of superposition (to a linear system) for the specific

case when the input signals are impulses.

Let us first define an impulse signal. An impulse is a very intense short

duration signal denoted by δ(t), which has the property that is a function
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f(t) is continuous at t = τ , then
∫ +∞
−∞ f(t)δ(t− τ)dτ = f(t). (1)

This indicates that an impulse is so intense that no other value of f(t) matters

expect over the short period over which the impulse occurs. If we replace f(t)

by u(t), then equation (1) represents an input u(t) as a sum of impulses of

intensity u(t− τ).

If for a general linear system we express the impulse response as h(t, τ),

the response at t to an impulse applied at τ , then the total response of a

system to an input u(t) can be expressed as

y(t) =
∫ +∞
−∞ u(τ)h(t, τ)dτ. (2)

This is the superposition integral applied only to linear systems. If the system

is also time-invariant (constant) then its impulse response is given by h(t−τ)

because the response of the system at t to an input at τ depends on the

difference between these two times. In other words

y(t) =
∫ +∞
−∞ u(τ)h(t− τ)dτ, (3)

or

y(t) =
∫ +∞
−∞ u(t− τ)h(τ)dτ = u(t) ∗ h(t). (4)

Equation (4) represents the convolution integral.

Transfer Functions

The most immediate consequence of the convolution integral is the concept

of transfer function. If a linear system has an input of the form est, where

s = σ + jω, then the output of that system will be of the form H(s)est. Both

input and output are of exponential form and they differ by the amplitude

H(s), which is the system transfer function.

If we let u(t) = est in equation (4) then

y(t) =
∫ +∞
−∞ u(t− τ)h(τ)dτ
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=
∫ +∞
−∞ h(τ)es(t−τ)dτ

=
∫ +∞
−∞ h(τ)e−sτdτest

= H(s)est (5)

This is the exponential response of the system. To find the transfer function

one does not have to compute the integral in equation (5). Rather, extensive

use of the properties of the Laplace transform is made.

A common way to use the exponential response of a linear time-invariant

system is in finding its frequency response, or its response to a sine input.

First we have that

Acos(ωt) =
A

2
(ejωt + e−jωt). (6)

The response of the system to input u(t) = e±jωt is y(t) = H(±jω)e±jωt.

From superposition, we have that the response of the system to a cosine is

y(t) =
A

2
[H(jω)ejωt + H(−jω)e−jωt]. (7)

If we represent the complex number H in polar form Mejφ, we have

y(t) =
A

2
M(ej(ωt+φ) + e−j(ωt+φ))

= AMcos(ωt + φ). (8)

We can generalize this result to more than just cos inputs buy taking the

Laplace transforms of the convolution integral, equation (4). Then we find

that

Y (s) = H(s)U(s), (9)

Using Laplace Transforms to Solve Problems

Laplace Transforms and transfer functions can be used for solving differ-

ential equations.

For example, find the solution of the differential equation

ÿ(t) + y(t) = 0, (10)
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where

y(0) = α, ẏ(0) = β. (11)

Taking the Laplace transform of both side of the differential equation we

have

s2Y (s)− αs− β + Y (s) = 0, (12)

or, solving for Y (s)

Y (s) =
αs

s2 + 1
+

β

s2 + 1
. (13)

Taking the inverse Laplace transform of these two terms (using a table

look-up) we have

y(t) = αcos(t) + βsin(t). (14)

In previous lectures we expressed the dynamics of various systems in state-

variable (or state-space) form as

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + du(t). (15)

We also saw that a linear dynamic system can be expressed by its transfer

function, or the Laplace transform of its differential equation. Given a state-

space form of equation (15) we can obtain the following equivalent transfer

function

H(s) =
Y (s)

U(s)
= C(sI−A)−1B + d. (16)

Note: Derive the expression of equation (16).

The transfer function H(s) can be expressed in two forms. As the ratio of

two polynomials in s

H(s) =
b1s

m + b2s
m−1 + · · ·+ bm+1

sn + a1sn−1 + · · ·+ an
, (17)

or in pole-zero form

H(s) = K
Πm

i=1(s− zi

Πn
i=1(s− pi)

. (18)

In equation (18) the zi’s and pi’s are the zeros and poles of the transfer

function H(s), respectively.
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Block Diagrams and Block Diagram Manipulation

When manipulating block diagrams a common configuration is that of

negative feedback loop. The transfer resulting from this configuration is

Y1(s) =
G1(s)

1 + G1(s)G2(s)
R(s). (19)

If we have positive feedback, then the denominator of equation (19) be-

comes 1 − G1(s)G2(s). If there is no component in the feedback path, the

system is called unity feedback system.

Note: Read the block diagram manipulations of pages 123-127. Read

example 3.20 on page 126.

Reading Assignment

See separate file on textbook reading assignments depending on the text

edition you own. This will be a good review for you. Read examples Handout

E.13 posted on the course web page.
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