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Impact of Pole & Zero Locations

The objective of this lecture is to provide you with some background on the

use of transfer function poles and zeros for determination of system dynamic

response in the time-domain.

Time Response Versus Pole Locations

Once the transfer function of a dynamic system is calculated, it can almost

always be expressed as the ratio of two polynomials. These polynomials can

be used to compute the system poles and zeros which completely determine

the system response, to within a constant. Poles and zeros can be used to

determine the time history of a dynamic system, and relate time histories to

the location of the poles and zeros on the s-plane.

The impulse response of a system is a time-function that corresponds to

the transfer function of a system. As such, it is usually called the natural

response of the system.

Why?

First Order Systems

For example, for a first-order pole

H(s) =
1

s + σ
, (1)
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Figure 1: First order system response.

which corresponds to the following impulse response

h(t) = e−σt1(t), (2)

where 1(t) is the unit step function. For σ > 0 the pole is located on the

left-half (LHP) of the complex plane (Re(s) < 0) and the exponential decays

resulting in a stable impulse response. On the contrary, if σ < 0 the pole

resides in the RHP and the impulse response is said to be unstable. Further,

we define the time constant of the impulse response as

τ =
1

σ
, (3)

as shown in Figure 1.

Examples of Transient Response Versus Real Pole Locations

Compare the time response and pole locations of the system with transfer

function

H(s) =
2s + 1

s2 + 3s + 2
. (4)
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Figure 2: Pole-zero locations of first order system.

The denominator can be written as (s+1)(s+2) and the poles of the system

are at −1 and −2. The system has only one zero at −1
2 . Performing a partial

fraction expansion on the transfer function (4) results in

H(s) = − 1

s + 1
+

3

s + 2
. (5)

Obtaining the inverse of the components results in the following impulse

response function

h(t) = −e−t + 3e−2t; t ≥ 0. (6)

Equation (6) reveals that the shape of the impulse response depends on the

pole locations, as shown in Figure 2.

In fact, this observation is more general. The shape of the natural response

of a system depends on the location of the poles of the transfer function. This

generalization is described in Figure 3. The role of the numerator (zeros) in

the overall system response is that it influences the size of the coefficients

multiplying each component of the response. Also, a “fast” pole is one that

decays faster compared to another pole, which would be called a “slow” pole.

Second Order Systems
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Figure 3: Time functions associated with pole locations.

A pole category that requires special attention is that of complex poles.

These can be expressed in terms of their real and imaginary parts, or

s = −σ ± jωd. (7)

Since there are always complex conjugate pairs of complex poles, the denom-

inator corresponding to complex poles becomes

a(s) = (s + σ − jωd)(s + σ + jωd) = (s + σ)2 + ω2
d. (8)

However, it is common practice to write a second order transfer function as

H(s) =
ω2

n

s2 + 2ζωns + ω2
n

. (9)

Comparing the denominator polynomial of equation (9) with equation (8) we

conclude that

σ = ζωn, (10)
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Figure 4: Second order system pole locations.

and

ωd = ωn

√
1− ζ2, (11)

where ζ is the damping ratio and ωn is the undamped natural frequency, and

ωd is the damped natural frequency. The pole locations for a second order

transfer function are shown in Figure 4.

Equation (9) can be rewritten as

H(s) =
ω2

n

(s + ζωn)2 + ω2
n(1− ζ2)

=
ω2

n

(s + σ)2 + ω2
d

, (12)

which corresponds to an impulse response function of

h(t) =
ωn√

1− ζ2e
−σtsin(ωdt)1(t). (13)

Note: Prove this to yourselves.

The time response of a second order system for different values of the

damping ratio are shown in the top segment of Figure 5. One should note

that as the damping ratio increases the actual frequency ωd decreases slightly.

For very low values of damping (ζ close to zero) the response is oscillatory,

while for large values of damping (ζ close to one) the response shows no

oscillations.
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Figure 5: Second order system response for different damping (a) impulse responses; (b) step responses.
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Figure 6: Pole locations corresponding to different damping ratios.

Three complex pairs of poles are shown in Figure 6, corresponding to differ-

ent values of the damping ratio. The imaginary part of the poles determines

the damped natural frequency, which in this case remains the same. This de-

spite changes in the (undamped) natural frequency and damping ratio. The

real part of the poles determines the decay rate of the exponential envelope.

For σ < 0 the response decays, whereas for σ > 0 becomes unbounded (or

unstable). For σ = 0 the response neither decays nor grows. Practically,

the system is considered unstable.

Time-domain Specifications

In the design of a mechanical system, of any other type of system, or even

a control system, we often specify requirements in terms of a system’s time

response. These requirements, shown in Figure 7, are defined as follows:

• rise time, tr, the time it takes for the system to reach the vicinity of its

new set-point.
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Figure 7: Time-domain system specifications.

• settling time, ts, the time it takes the system transients to decay,

• overshoot, Mp, the maximum system overshoot divided by its final

value,

• peak time, tp, the time it takes for a system to reach the maximum

overshoot point.

For a second order system with no zeros the rise time can be approximately

expressed as

tr ∼= 1.8

ωn
. (14)

For the overshoot more precise expressions can be obtained. At the over-

shoot value, the derivative of the response is zero. The step response of a

second order system in the time domain is given by

y(t) = 1− e−σt(cosωdt +
σ

ωd
sinωdt), (15)

where ωd = ωn

√
1− ζ2 and σ = ζωn. Taking the derivative of expression (15)
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and setting it to zero we obtain

ẏ(t) = σe−σt(cosωdt +
σ

ωd
sinωdt)− e−σt(−ωdsinωdt + σcosωdt) = 0

= e−σt(
σ2

ωd
sinωdt + ωdsinωdt) = 0. (16)

The zero point occurs when

ωdtp = π, (17)

and we have the following formula for the peak time

tp =
π

ωd
. (18)

For this value of time, the overshoot is equal to

y(tp) = 1 + Mp = 1− e−σπ/ωd(cosπ +
σ

ωd
sinπ),

= 1 + e−σπ/ωd. (19)

So, we have the following formula for the overshoot

Mp = e−πζ/
√

1−ζ2

, 0 ≤ ζ < 1. (20)

For a second order system, a plot of the overshoot Mp versus the damping

ratio is shown in Figure 8.

Finally, we would like an expression for the settling time. We can define

the settling time as that value of ts when the decaying exponential reaches

1%. So,

e−ζωnts = 0.01, (21)

or

ts =
4.6

ζωn
=

4.6

σ
. (22)

In summary, for a second order system with no zeros, we have the follow-

ing equations that determine its time-domain characteristics

ωn ≥ 1.8

tr
, (23)

ζ ≥ ζ(Mp), (24)

σ ≥ 4.6

ts
. (25)
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Figure 8: Overshoot versus damping ratio for a second order system.

These inequalities can be graphed in the s-plane and used for design, as shown

in Figure 9.

The Effects of Zeros and Additional Poles

So far we have only accounted for the time-domain characteristics of a

second order system with no zeros. If the system has zeros or additional poles

(higher than second order system) then the transient response of the system

is more complex and it cannot be expressed in terms of simple equations, as

before.

Mathematically speaking, the presence of zeros in a transfer function is to

modify the coefficients of the exponential terms in the transient response. For

example, consider two transfer functions with the same poles but different
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Figure 9: Time-domain specifications in the s-plane.

zeros, as follows

H1(s) =
2

(s + 1)(s + 2)

=
2

s + 1
− 2

s + 2
, (26)

H2(s) =
2(s + 1.1)

1.1(s + 1)(s + 2)

=
2

1.1
(

0.1

s + 1
+

0.9

s + 2
)

=
0.18

s + 1
+

1.64

s + 2
. (27)

The two transfer functions are normalized to have the same DC gain, i.e. the

transfer function value at s = 0. Notice that the coefficient of the (s + 1)

term has been reduced dramatically from 2 to 0.18. This reduction is the

result of the zero at s = −1.1 which is close to the pole at s = −1. If the

zero is place exactly where the pole is located, then this term will disappear.

To account for the effect of a zero on the overall system transient response,

consider a transfer function with a zero and two complex poles, as follows:

H(s) =
(s/αζωn) + 1

(s/ωn)2 + 2ζ(s/ωn) + 1
. (28)

The zero for the transfer function is locate at s = −αζωn = −ασ. If α is

large then the zero will be far away from the real part of the poles and its
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Figure 10: Impact of zero location on transient response.

impact will be minimal. If α ∼= 1 then the zero will be close to the poles

and its impact will be significant. The step response of such a system with

0.5 damping ratio and for different values of α is shown in Figure 10. We see

that the major impact of the zero is to increase the overshoot Mp, with little

impact on the settling time.

When the value of α is negative, then there is a zero on the RHP, also

called a nonminimum-phase zero. The transient response of the resulting

system is quite different. In fact, the overshoot is suppressed to the point

that the response first starts in the wrong direction and then changes sign.

In studying the effect of an additional pole, let us consider the following

transfer function

H(s) =
1

(s/αζωn + 1)((s/ωn)2 + 2ζ(s/ωn) + 1)
. (29)

Plots of the transient response of such a system with 0.5 damping ratio for

different values of α are shown in Figure 11. In this case, the major effect
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Figure 11: Impact of an additional pole on transient response.

is the increase in the rise time, i.e. the system response slows-down as the

additional pole gets closer to the real part of the complex poles.

The Effects of Pole-Zero Patterns on Dynamic Response – A Summary

• For a second order system with no zeros, the transient response parame-

ters can be approximately obtained by

Rise T ime : tr ∼= 1.8

ωn
, (30)

Overshoot : Mp = Mp(ζ), (see F igure 8) (31)

Settling time : ts ∼= 4.6

σ
. (32)

Note: This kind of system is also said to have second order dominance.

• A zero in the LHP will increase the overshoot if the zero is within a factor

of 4 of the real part of the complex poles, otherwise its impact is minimal.
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• A zero in the RHP will depress the overshoot (and will cause the response

to start in the wrong direction - non-minimum phase response)

• A additional pole in the LHP will increase the rise time significantly, if

the extra pole is within a factor of 4 of the real part of the complex poles,

otherwise its impact is minimal.

Reading Assignment

See separate file on textbook reading assignments depending on the text

edition you own. Read examples Handout E.15 posted on the course web

page.
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