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Lecture 2: State-space Representation of Dynamic Systems

The objective of this lecture is to introduce you to the two distinct models

used in representing dynamic systems in the time-domain; namely input-

output models and state-space models. The procedure for obtaining the

state-space representation of an input-output model is also presented.

Input-Output Models

In dealing with dynamic systems we define inputs and outputs. Inputs

originate outside the system and are not directly dependent on what happens

in the system. Outputs are chosen from the set of variables generated by the

system as it is subjected to the input variables. The choice of the outputs is

fairly arbitrary.

Consider the single-input, single-output dynamic system shown in Figure

1. For most systems we will encounter in this class, the relation between the

input and the output signal can be represented by the following nth order

differential equation:

f(y(t),
dy(t)

dt
, . . . ,

dny(t)

dtn
, u(t),

du(t)

dt
, . . . ,

dum(t)

dtm
) = 0, (1)

where m ≤ n for physically realizable systems, and where the function f is,

in general, nonlinear.

For a linear, single input, single output system, equation (1) can be sim-
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Figure 1: Single-input, single-output dynamic system.

Figure 2: Mechanical system for example 1.

plified as

an
dny(t)

dtn
+ an−1

dn−1y(t)

dtn−1 + . . . + a1
dy(t)

dt
+ a0y(t) = (2)

bm
dmu(t)

dtm
+ bm−1

dm−1u(t)

dtm−1 + . . . + b1
du(t)

dt
+ b0u(t), (3)

where an, . . . , a0 and bm, . . . , b0 are all constant coefficients. Again, m ≤ n.

Example 1

Derive an input-output model for the system shown in Figure 2. The

mass m is supported by an oil film bearing that produces a resisting force

proportional to the velocity of the mass.

For this system the choice of the input and output is rather obvious. The

force Fi(t) is the input and the resulting velocity v1(t) is the output. The

system equation of motion is

m
dv1(t)

dt
+ bv1(t) = Fi(t). (4)
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Figure 3: Mechanical system for example 2.

So, here u(t) = Fi(t) and y(t) = v1(t), with n = 1 and m = 0. Also, a0 = b,

a1 = m and b0 = 1.

Example 2

Derive the input-output equations for the mechanical system show in Fig-

ure 3, using the force F1(t) as the input variable and the displacements x1(t)

and x2(t) as the output variables.

The equation of motion for mass m1 is

m1ẍ1(t) + b1ẋ1(t) + (k1 + k2)x1(t)− k2x2(t) = F1(t). (5)

The equation of motion for mass m2 is

m2ẍ2(t) + k2x2(t)− k2x1(t) = 0. (6)

Combining equations (5) and (6) and eliminating x1(t) yields the following

input-output equation for the system

d4x2

dt4
+ (

b1

m1
)
d3x2

dt3
+ (

k2

m2
+

k1

m1
+

k2

m1
)
d2x2

dt2
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Figure 4: Multi-input, multi-output dynamic system.

+
b1k2

m1m2

dx2

dt
+

k1k2

m1m2
x2 =

k2

m1m2
F1(t). (7)

This equation can be solved provided that four initial conditions and the

input F1(t) is known. Similarly, the input-output equation relating x1(t) to

F1(t) can be derived as

d4x1

dt4
+ (

b1

m1
)
d3x1

dt3
+ (

k2

m2
+

k1

m1
+

k2

m1
)
d2x1

dt2

+
b1k2

m1m2

dx1

dt
+

k1k2

m1m2
x1 = (

1

m1
)
d2F1

dt2
+

k2

m1m2
F1(t). (8)

For multi-input, multi-output systems, equations (1), (2) and (3) can be

generalized for use. Figure 4 depicts the block diagram of such a system.

State-Space Models

The reason we introduce state-space models, in addition to input-output

models, is the fact that the former are much more powerful than the latter,

and they are widely used in modeling complex engineering systems. The

concept of a state is similar to that defined in thermodynamics. That is,

state variables constitute the minimum number of variables which, if known,

completely describe the system under consideration. When the state variables

are grouped together they form the so-called state vector. The models that

result from the use of the state vector are called state-space models. Finally,

we define state trajectory as the path over time, followed by the state of a
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system.

Mathematically, the state-space equations are sets of first-order differential

equations. For a linear system model the state-space equations take the

following form

q̇1(t) = a11q1(t)+a12q2(t)+ . . .+a1nqn(t)+ b11u1(t)+ b12u2(t)+ . . .+ b1mum(t)

(9)
...

q̇n(t) = an1q1(t)+an2q2(t)+ . . .+annqn(t)+bn1u1(t)+bn2u2(t)+ . . .+bnmum(t),

(10)

where q1(t), . . . , qn(t) are the state variables (also denoted by x(t)), and u1(t),

. . . , um(t), are the input variables.

The system output equations are

y1(t) = c11q1(t)+ c12q2(t)+ . . .+ c1nqn(t)+d11u1(t)+d12u2(t)+ . . .+d1mum(t)

(11)
...

yp(t) = cn1q1(t)+cn2q2(t)+ . . .+cnnqn(t)+dn1u1(t)+dn2u2(t)+ . . .+dnmum(t),

(12)

y1(t), . . . , yp(t) are the output variables.

These equations can be written in more compact matrix form as

q̇(t) = AAAq(t) + BBBu(t), (13)

and

y(t) = CCCq(t) +DDDu(t), (14)

where AAA is the n × n state matrix, BBB is the n × m input, CCC is the p × n

output matrix, and DDD is the p × m direct output (or feedforward) matrix.

Furthermore, q(t) is the state vector, u(t) is the input vector, and y(t) is the

output vector.
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Figure 5: Block diagram of a state model.

In the case of a general nonlinear system, the state-space equations can be

generalized as follows:

q̇1(t) = f1(q1(t), q2(t), . . . , qn(t), u1(t), u2(t), . . . , um(t)) (15)

...

q̇n(t) = fn(q1(t), q2(t), . . . , qn(t), u1(t), u2(t), . . . , um(t)), (16)

whereas the output equations can be expressed as

y1(t) = g1(q1(t), q2(t), . . . , qn(t), u1(t), u2(t), . . . , um(t)) (17)

...

yp(t) = gn(q1(t), q2(t), . . . , qn(t), u1(t), u2(t), . . . , um(t)). (18)

A block diagram of the state-space representation of this multi-input, multi-

output nonlinear system is depicted in Figure 5.

Input-Output to State-space Transition

Input-output and state-space models are equivalent. As a result an input-

output model can be transformed to a state-space model, and vice versa

(though the latter is a bit more cumbersome).
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Figure 6: Equivalent input-output and state-space models.

Consider the following simple input-output equation

an
dny(t)

dtn
+ . . . + a1

dy(t)

dt
+ a0y(t) = b0u(t), (19)

If we select the following state variables

x1(t) = y(t), x2(t) =
dy(t)

dt
, . . . , xn(t) =

dn−1y(t)

dtn−1 , (20)

the equivalent set of state-space equations are

ẋ1(t) = x2(t), (21)

ẋ2(t) = x3(t) (22)

... (23)

ẋn−1(t) = xn(t) (24)

ẋn(t) = −(
a0

an
)x1(t)− (

a1

an
)x2(t)− . . .− (

an−1

an
)xn(t) + (

b0

an
)u(t). (25)

Figure 6 depicts the equivalence between input-output and state-space mod-

els.

Example 3

The input-output equation for a mechanical system is given by

(m1m2)
d4x(t)

dt4
+ (m2b1 + m2b2 + m1b2)

d3x(t)

dt3
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+ (m1k1 + m2k1 + m2k2 + b1b2)
d2x(t)

dt2

+ (b1k2 + b2k1)
dx(t)

dt
+ k1k2x(t) = k2F (t), (26)

where the input is F (t) and the output is x(t). Derive an equivalent state-

space model for this system.

Define the state variables as

q1(t) = x(t), q2(t) =
dx(t)

dt
, q3(t) =

d2x(t)

dt2
, q4(t) =

d3x(t)

dt3
, (27)

and the state-space equations are

q̇1(t) = q2(t), (28)

q̇2(t) = q3(t), (29)

q̇3(t) = q4(t), (30)

q̇4(t) = −(
k1k2

m1m2
)q1(t)− (

b1k2 + b2k1

m1m2
)q2(t)− (

m1k2 + m2k1 + m2k2 + b1b2

m1m2
)q3(t)

− (
m2b1 + m2b1 + m1b2

m1m2
)q4(t) + (

k2

m1m2
)F (t). (31)

The output equation is

y(t) = q1(t). (32)

Equations (28) through (32) form a state-space model of this mechanical

system.

Let us now consider the transformation of a model to state-space form

from the standard second-order form of mechanical systems. Consider the

following mechanical system model obtained following repeated application

of Newton’s second law

m{ẍ(t)}+ b{ẋ(t)}+ k{x(t)} = {F (t)}, (33)

where {ẍ(t)}, {ẋ(t)}, {x(t)} represent acceleration, velocity, and displace-

ment vectors, and where m, b, k represent the mass, damping and stiffness
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matrices. The vector {F (t)} represents the forcing function of the system.

Equation (33) can be rewritten as

{ẍ(t)}+ m−1b{ẋ(t)}+ m−1k{x(t)} = m−1{F (t)}. (34)

Now define the following state vector

q(t) =



{x(t)}
{ẋ(t)}


 , (35)

and the following input vector

u(t) = {F (t)}. (36)

Using the state vector (35) the second-order system can be written as

q̇(t) =




0 I

−m−1k −m−1b


 q(t) +




0

m−1


 u(t). (37)

What about the system outputs? As mentioned before, one can arbitrarily

define any (linear) combination of states as the outputs for this system. For

example, let us define all of the velocities as the outputs of this system, i.e.

define the output vector y(t) as the vector {ẋ(t)}. Then we can express is in

terms of the state vector as follows:

y(t) =
[
0 I

]
q(t) +

[
0

]
u(t). (38)

Equations (37) and (38) form a state-space representation of the forced me-

chanical system (34). This representation is appropriate for any M degree-of-

freedom (MDOF) mechanical system. Furthermore, the mechanical system

(34) contains only translational dynamics, i.e. only linear displacement, ve-

locity and acceleration are involved in the equations. A similar process of de-

riving state-space equations applies to mechanical systems that include only

rotational dynamics and even both translational and rotational dynamics.

9



The definition of the state vector must be augmented to include the rota-

tional degrees of freedom of the system, that is the angular displacements

and angular velocities.

Reading Assignment

See separate file on textbook reading assignments depending on the text

edition you own. Read Handout A.3 and examples Handout E.7 posted on

the course web page.
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