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The objective of this lecture is to discuss certain aspects of steady-state

feedback system tracking issues, and look into the methods by which we can

determine system stability given a transfer function or a state-space model.

Steady-State Tracking and System Type

In general, we would like to investigate the steady-state performance of a

feedback system to disturbances and/or reference inputs that are not only

constants, but can be expressed as arbitrary polynomials in time. Assuming

that the system under consideration is stable1, we classify such systems into

system types depending to the polynomial degree for which the tracking

error is constant. System types can be defined with respect to the reference

input or disturbance.

Let us consider the system with block diagram representation given by

Figure 1. This block diagram can be simplified as shown in Figure 2, where

we have ignored the disturbance signal. So, we will first concentrate on the

steady-state tracking performance of the system to reference inputs, r(t).

Now, let’s consider the following reference input

r(t) =
tk

k!
1(t), (1)

with the corresponding Laplace transform

R(s) =
1

sk+1 . (2)

1Otherwise, steady-state response does not even exist.
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Figure 1: Typical single-loop system.

Figure 2: Simplified block diagram of a typical single-loop system.
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To compute the steady-state errors we start from the following reference

to output transfer function (see Figure 2)

Y (s)

R(s)
= T (s) =

DrDG(s)

1 + HDyDG(s)
, (3)

whereas the error is expressed as

E(s) = R(s)− Y (s) = R(s)− T (s)R(s), (4)

or

E(s) = (1− T (s))R(s). (5)

From the final value theorem

ess = lim
t→∞ e(t) = lim

s→0
sE(s) = lim

s→0
s(1− T (s))R(s). (6)

So, the steady-state error can be expressed as

ess = lim
s→0

s
1− T (s)

sk+1 = lim
s→0

1− T (s)

sk
. (7)

The result of the above expression can be zero, a non-zero constant, or infinity.

If it is a non-zero constant, the system is referred to as Type k.

The Special Case of Unity Feedback

Assume now that the system has unity feedback, with Dr(s) = 1, and that

G0(s) = DrDG(s). (8)

Then, from the closed-loop transfer function we obtain that

1− T (s) =
1

1 + G0(s)
. (9)

The system error is given by

E(s) =
1

1 + G0(s)
R(s). (10)

Using the Final Value Theorem, we find that the steady-state value of the

system error is

ess = lim
s→0

s
1

(1 + G0(s))sk+1 = lim
s→0

1

(1 + G0(s))sk
. (11)
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Step Ramp Parabola
Type 0 1

1+Kp
∞ ∞

Type I 0 1
Kv

∞
Type II 0 0 1

Ka

Now, depending on the system type and the nature of the reference signal,

we have differing steady-state errors. These are summarized in the following

table.

The various coefficients mentioned in the table are defined as

Position− error Constant Kp = lim
s→0

G0(s), (12)

V elocity Constant Kv = lim
s→0

sG0(s), (13)

Acceleration Constant Ka = lim
s→0

s2G0(s). (14)

System Type with Respect to Disturbance

Similar to the ability of a system to track references, it is possible to define

system type with respect to disturbance rejection. To do so, we define the

following transfer function

Y (s)

W (s)
= Tw(s). (15)

This transfer function determines the system error from a disturbance input.

The system is Type 0 if a step disturbance results in a constant steady-

state output error. The system is Type 1 if, for a ramp input disturbance,

the steady-state value of the output is a constant, i.e.

yss = lim
s → 0

[sTw(s)
1

s2 ] = constant. (16)

or equivalently, the steady-state output for a step input disturbance is,

yss = lim
s → 0

[sTw(s)
1

s
] = 0. (17)

In other words,

Tw(0) = 0, (18)
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or DC gain of zero.

System Stability

There are varying definitions for stability, but we will choose to use the

concept of bounded input-bounded output (BIBO) stability.

That is a system is said to be BIBO stable, if for every bounded input,

u(t), the resulting system response, y(t), is also bounded. In terms of the

system impulse response, h(t), BIBO stability can be stated as follows: a

system is BIBO stable if and only if the integral
∫ −∞
−∞ |h(τ)|dτ < ∞. (19)

In general, if a system has any poles on the imaginary axis or on the RHP,

the integral of its impulse response will not be finite and it will not be a

BIBO-stable system. Whereas, if all of its poles are in the LHP, then it will

be BIBO-stable. So, we can use the pole locations of a system to determine

stability.

Equivalence of Transfer Function Poles and System Eigenvalues:

In the past, we derived transfer function models for dynamic systems and

defined the poles of such transfer functions as the zeroes of the denomina-

tor polynomial. Further, we have developed state-space models, either di-

rectly from physical principles or from transfer function models. We then

defined the system modes, as the eigenvalues of the A matrix of the state-

space model. For a given system transfer function model and its equivalent

state-space representation, the poles of the system are identical to the

eigenvalues of the A matrix of the system state-space representa-

tion. As a result, we can investigate system stability using system poles (in

the frequency domain) or system eigenvalues (in the time domain).

Stability Criterion Based on Poles or Eigenvalues
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Consider the transfer function

T (s) =
Y (s)

R(s)
=

b0s
m + b1s

m−1 + . . . + bm

sn + a1sn−1 + . . . + an
,

=
K

∏m
i=1(s− zi)

∏n
i=1(s− pi)

, m ≤ n, (20)

where pi are the system poles and zi are the system zeros. The denominator

polynomial set to zero is also called the characteristic equation.

The system response in the time-domain can now be expressed as

y(t) =
n∑

i=1
Kie

pit, (21)

where the exponents are the poles and the coefficients depend on the system

zeroes and the initial conditions. This system will be stable if and only if all

terms on the right-hand-side of equation (21) go to zero as t → ∞. This

happens if all of the poles of the system are strictly on the LHP, i.e.

<e {pi} < 0. (22)

This is called asymptotic internal stability. Since the poles of a system

are identical to the eigenvalues of its equivalent state-space representation,

we can also state that a system will be stable if all of its eigenvalues are

strictly on the LHP, i.e.

<e {λi} < 0. (23)

So, we can determine the stability of a system by computing its poles or its

eigenvalues and checking their real-parts. Computing the poles of a system

from a general order denominator polynomial or computing the eigenvalues

of a system from a general matrix requires tools such as MATLAB.

Routh’s Stability Criterion

A more indirect way of determining system stability without the use of

MATLAB is the so-called Routh criterion. This criterion states that a

necessary and sufficient condition for stability is that all of the elements in

the first column of the Routh array be positive.
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Row n sn : 1 a2 a4 · · ·
Row n-1 sn−1: a1 a3 a5 · · ·
Row n-2 sn−2: b1 b2 b3 · · ·
Row n-3 sn−3: c1 c2 c3 · · ·
...

...
...

...
...

Row 2 s2: ∗ ∗
Row 1 s1: ∗
Row 0 s0: ∗

To construct the Routh array, we consider the following characteristic equa-

tion

a(s) = sn + a1s
n−1 + . . . + an−1s + an = 0. (24)

Then the Routh array is constructed as shown in the table above.

The elements b and c in the array are computed as follows:

b1 = −1a3 − a1a2

a1
=

a1a2 − a3

a1
,

b2 = −1a5 − a1a4

a1
=

a1a4 − a5

a1
,

b3 = −1a7 − a1a6

a1
=

a1a6 − a7

a1
,

c1 = −a1b2 − b1a3

b1
=

b1a3 − a1b2

b1
,

c2 = −a1b3 − b1a5

b1
=

b1a5 − a1b3

b1
,

c3 = −a1b4 − b1a7

b1
=

b1a7 − a1b4

b1
.

(25)

Example: Routh’s Test

Determine the stability of a system that has the following characteristic

polynomial

a(s) = s6 + 4s5 + 3s4 + 2s3 + s2 + 4s + 4 = 0. (26)

The Routh array is given in the table above.
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s6: 1 3 1 4
s5: 4 2 4 0
s4: 5

2 = 4·3−1·2
4 0 = 4·1−4·1

4 4 = 4·4−1·0
4

s3: 2 =
5
2 ·2−4·0

5
2

− 12
5 =

5
2 ·4−4·4

5
2

0

s2: 3 = 2·0−( 5
2 )·(− 12

5 )

2 4 = 2·4− 5
2 ·0

2

s1: − 76
15 = 2·(− 12

5 )−8·1
3 0

s0: 4 = − 76
15 ·4−0

− 76
15

.

Since the elements of the first column of the Routh array are not all posi-

tive, the polynomial has RHP roots. In fact, there are two roots on the RHP,

since there are two sign changes on the first column of the Routh array.

Reading Assignment

See separate file on textbook reading assignments depending on the text

edition you own. Read the examples in Handout E.22 and Handout A.6

posted on the course web page.
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