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Lecture 22: Introduction to Root-Locus

The objective of this lecture is to introduce you to another method used

in the analysis and design of control systems, namely the root-locus tech-

nique. The basic idea exploited in root-locus design is that one can track

the movement of the closed-loop poles as parameters of interests, such as a

controller gain, are varied. This gives a designer the map of the closed-loop

pole movement on the s-plane and proper design choices can be made.

Root Locus of a Basic Feedback System

Assume the following closed-loop transfer function

Y (s)

R(s)
=

KAKGG(s)

1 + KAKGG(s)
, (1)

where KA and KG is the controller and system gain, respectively. The closed-

loop poles are the roots of

1 + KAKGG(s) = 0. (2)

Let us assume that the transfer function G(s) can be expressed in terms

of its poles and zeros as

G(s) =
b(s)

a(s)
=

∏m
i=1(s− zi)

∏n
i=1(s− pi)

, (3)

and that

K = KAKG. (4)

We now express the characteristic equation in various root-locus forms, as

follows:

1 + KG(s) = 0, (5)
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1 + K
b(s)

a(s)
= 0, (6)

a(s) + Kb(s) = 0, (7)

G(s) = − 1

K
. (8)

The root-locus can be thought of as a method for inferring the location of the

closed-loop poles from examining the open-loop transfer function, KG(s).

Example 1: Root Locus with Respect to Controller Gain

A normalized transfer function of a DC motor is

θm(s)

Va(s)
= KGG(s) =

1

s(s + 1)
. (9)

The characteristic equation for this system is

1 + K
1

s(s + 1)
= 0, (10)

or

s2 + s + K = 0. (11)

The solution of equation (11) gives the closed-loop pole locations, as follows:

r1, r2 = −1

2
±
√

1− 4K

2
. (12)

Plotting these two roots as K is allowed to vary, results in the following

root-locus, shown in Figure 1.

Several simple observations can be made from Figure 1. There are two

roots and thus two branches to the locus. At K = 0 these branches begin

at the open-loop poles, because for K = 0 the system is open-loop. As K

is increased the closed-loop poles move towards each other and they meet

at s = −1
2 . At that point they break away from the real axis. From the

breakaway point the poles move towards infinity, while their sum is equal

to −1. We have now characterized the path the closed-loop poles transverse

as the gain K is allowed to increase.

Example 2: Root Locus with Respect to Plant Parameters
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Figure 1: Root Locus for G(s) = 1
s(s+1) as a function of the controller gain K.

Now, consider the following transfer function

G(s) =
1

s(s + c)
. (13)

We want to find the root-locus with respect to c. Here we assume that K = 1.

The corresponding closed-loop characteristic equation is

1 + G(s) = 0, (14)

or

s2 + cs + 1 = 0. (15)

We can express this as

1 + c
s

s2 + 1
= 0, (16)

placing it in the standard root-locus form. The roots of equation (16) can be

expressed as

r1, r2 = −c

2
±
√

c2 − 4

2
. (17)

Plotting these two roots as c is allowed to vary results in the following root-

locus, shown in Figure 2.

Note that when c = 0 the closed-loop poles are also the open-loop poles.

The closed-loop poles are damped as c grows. At s = −1 the two segments
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Figure 2: Root Locus for G(s) = 1
s(s+c) as a function of the damping factor c.

of the root-locus abruptly change direction and move away from each other;

one towards the origin and the other towards infinity. This point of change

in direction is called the break-in point.

Guidelines for Sketching a Root Locus

The root-locus of a transfer function can be accurately drawn using, for

example, MATLAB. However, one can obtain sketches of the root-locus by

following the following steps. We will demonstrate the use of these steps on

the following transfer function

G(s) =
1

s((s + 4)2 + 16)
. (18)

STEP 1: Place the open-loop poles and zeros of G(s) on the s-plane. See

Figure 3.

STEP 2: Find the segments of the real-axis belonging to the root-locus.

The acceptable segments must have an odd number of poles plus zeros to

their right. See Figure 4.

STEP 3: Draw the asymptotes for large values of K. As K → ∞ the
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Figure 3: Step 1 of the Root Locus.

Figure 4: Step 2 of the Root Locus.
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Figure 5: Step 3 of the Root Locus.

root-locus equation

G(s) = − 1

K
, (19)

can only be satisfied if G(s) = 0. This can occur in two ways; first at the

zeros of G(s) and second when some asymptotes approach infinity. If the

system has n poles and m zeros, then there will be n−m asymptotes. These

asymptotes form angles (with the real axis) given by

φl =
180o + 360o(l − 1)

n−m
, l = 1, 2, . . . , n−m, (20)

and they intercept the real-axis at

α =

∑
pi − ∑

zi

n−m
. (21)

See Figure 5.

STEP 4: Compute the departure angles from the open-loop poles and the

arrival angles to the open-loop zeros. If a pole appears q times then the

departure angle is given by

qφdep =
∑

ψi −
∑

φi − 180o − 360ol, (22)
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Figure 6: Step 4 of the Root Locus.

where
∑

φi is the sum of the angles of the remaining poles and
∑

ψi is the

sum of the angles of all the zeros. Also, l takes q values and it is selected

such that φdep in the range (−180o, +180o). Similarly, for arrival angles, we

have the following formula

qψarr =
∑

φi −
∑

ψi + 180o + 360ol, (23)

See Figure 6.

STEP 5: Estimate the points where the root-locus crosses the imaginary

axis. This can be done using Routh’s criterion. For the third-order example

we are using, the characteristic equation is

1 +
K

s((s + 4)2 + 16)
= 0, (24)

or equivalently,

s3 + 8s2 + 32s + K = 0. (25)

The Routh array is then given by

s3 : 1 32

s2 : 8 K
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Figure 7: Step 5 of the Root Locus.

s1 :
8× 32−K

8
0

s0 : K (26)

For 0 < K < 256 there are no positive roots of the characteristic polynomial.

If we substitute K = 256 and s = jω into equation (25) we obtain the non-

trival solution ω = ±5.66. Note that the asymptote crosses the imaginary

axis at 4.62. See Figure 7.

STEP 6: Estimate the location of multiple roots, especially on the real-axis

(breakaway points). The location s0 of the breakaway point is computed by

solving the following equation

d

ds
(− 1

G(s)
)s=s0

= 0. (27)

STEP 7: Complete the root-locus sketch by combining the information

obtained from Steps 1 through 5, and 6 if necessary. See Figure 8.

Uses and Gain Selection from the Root Locus
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Figure 8: Step 7 of the Root Locus.

The root-locus technique is a method by which the closed-loop pole lo-

cations of a system can be tracked as a parameter is allowed to vary from

zero to infinity. So far we only mentioned the use of the control gain as a

parameter to vary. However, any system parameter can be allowed to vary

and the same procedures of root-locus can be used in mapping the location

of the closed-loop poles. The key is to express the characteristic equation in

the form

1 + KG(s) = 0, (28)

where K can be any parameter to be varied. In doing so, one would collect

the terms that do not multiply the parameter to be varied and name it

a(s), whereas the terms that do multiple the parameter as b(s). These two

polynomials define the poles and zeros of the system, respectively. The rest of

the procedure for plotting the root-locus is as described before. Further, one

could generate a root-locus when two parameters must be allowed to vary.

This is done by allowing one parameter to vary while fixing the other.
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One more use of the root-locus is that it allows us to compute the gain

required to place the closed-loop poles on certain locations on the root-locus.

Every point on the root-locus satisfies the condition

1 + KG(s) = 0. (29)

This is a complex relation and the magnitude part of equation (29) corre-

sponds to

K =
1

|G(s)| . (30)

So, for any point on the root-locus, s0, the required gain K0 can be obtained

from

K0 =
1

|G(s)|s=s0

. (31)

Reading Assignment

See separate file on textbook reading assignments depending on the text

edition you own. Read the examples in Handout E.26 posted on the course

web page.
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