# Texas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls

Dr. Alexander G. Parlos

#### Lecture 24: Dynamic Compensation Using Root-Locus

In addition to Bode plots, we can use the root-locus method to design dynamic compensators. The simplest form of a dynamic compensator takes the structure

$$D(s) = \frac{s+z}{s+p},\tag{1}$$

where if z < p it is a lead compensator, and if z > p it is a lag compensator.

## Lead Compensation

To understand the stabilizing effect of a lead compensator, we first consider D(s) = s + z. This is a PD controller and we apply it to the following second order system

$$KG(s) = \frac{K}{s(s+1)}.$$
(2)

The uncompensated and compensated root-locus is shown in Figure 1. The effect of a zero is to move the locus towards the stable region of the s-plane. Whereas before compensation achieving  $\omega_n$  of, say, 2 would have resulted in very low damping (and high overshoot), following compensation we can achieve the same  $\omega_n$  with damping ratio of more than 0.5.

The problem with the a pure lead compensator (zero only) is that its implementation requires use of a differentiator which is very sensitive to sensor noise. Furthermore, it is impossible to build a pure differentiator. However, the addition of a fast pole would not greatly reduce the effect of the zero. So, for example, we could suggest the following lead compensator,

$$D(s) = \frac{s+2}{s+20}.$$
 (3)



Figure 1: Root locus without compensation (solid line) and with PD compensation (dashed line).

The effect of the pole on the compensation can be seen in Figure 2.

Selecting exact values of z and p is usually done by trial and error. Generally, the zero is placed near the closed-loop pole. The choice of the compensator pole is a compromise between noise suppression and compensation effectiveness. The process can be made more analytical in nature, if the closed-loop pole is selected first. Then we arbitrarily select one of the lead-compensator parameters and use the angle criterion to select the other.

### Lag Compensation

Once the desired transient response is obtained, one might discover that the steady-state response of the feedback loop is not satisfactory. Improvements in the steady-state errors can be made by placing a pole near the origin, which is usually accompanied by a zero nearby so that the pole-zero pair does not significantly interfere with the overall dynamic system response, shaped by the lead compensator.

For the problem studied previously, the lead compensator  $\frac{s+2}{s+20}$  could be



Figure 2: Effect of pole on compensation.



Figure 3: Effects of lag compensation on root locus.

followed by a lag compensator  $\frac{s+0.1}{s+0.01}$ . The lag will not impact the faster dynamics. However, a root close to the imaginary axis will persist and it will slow down the overall response. As a result, it is important to place the lag pole-zero at as high frequency as possible, without impacting the dominant system dynamics. The effect of the lag compensation on the root locus is shown in Figure 3.

# **Reading Assignment**

See separate file on textbook reading assignments depending on the text edition you own. Read the examples in Handout E.28 posted on the course web page.