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The objective of this lecture is to review the fundamental components of

electric and electromagnetic circuits. The laws governing electric circuits will

be presented.

Basic Laws of Circuits

In electric circuits we talk about two-terminal elements, such as resistors,

capacitors, etc., as shown in Figure 1. The electric potential at each terminal

is measured by its voltage with respect to the ground or some other local

reference potential, such as a machine frame or chassis. The rate of flow

of electrical charge through the element, its current, is measured in terms of

amperes or A. The fundamental equation relating these two quantities usually

takes the form

e12(t) = f1(iA(t)) or iA(t) = f2(e12(t)). (1)

In addition to the two-terminal elements, there are two types of ideal

sources used to drive circuits, as shown in Figure 2. The ideal voltage source,

capable of delivering designated voltage level es regardless of the current

drawn, and the ideal current source, capable of delivering the designated

current is regardless of the voltage required to drive the load.

Two basic laws govern the operation of circuits. These are known as Kir-

choff’s voltage law and Kirchoff’s current law. The voltage law says that the
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Figure 1: Circuit diagram of a two-terminal electrical element.

Figure 2: Circuit diagram of a voltage and current sources.

sum of the voltage drops around a loop must be zero. The current law says

that the sum of the currents at a node (the junction of two or more elements)

must be zero. These two laws are illustrated in Figures 3 and 4.

Capacitors

A capacitor is used to store electric charge. The equation describing the

capacitor charge is

qC(t) = Ce12(t). (2)

In terms of the current (the rate of change of the charge), the governing
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Figure 3: Kirchoff’s Voltage Law.

Figure 4: Kirchoff’s Current Law.
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Figure 5: Circuit diagram of an ideal capacitor.

equation for a capacitor is

iC(t) = C
de12(t)

dt
. (3)

The state variable of a capacitor is the its voltage e12(t).

A capacitor, like a mass m, is an energy storage element and it is used to

store electrical energy. This energy is in the form of a static field and it can

be expressed as

EEEe(t) =
C

2
e2
12(t). (4)

As in the arguments about a mass m, attempts to suddenly change the voltage

across a capacitor would require an infinite power source. However, one can

suddenly change the capacitor current. An ideal capacitor is shown in Figure

5.

Inductors

The variable governing the operation of an inductor is the flux linkage, λ12.

It can be expressed in terms of the current flowing through the inductor as

λ12(t) = LiL(t). (5)

In terms of the voltage, e12(t) = dλ12(t)
dt and the governing equation for an

inductor is expressed as

e12(t) = L
diL(t)

dt
. (6)
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Figure 6: Circuit diagram of an ideal inductor.

Note the similarity of an inductor to the ideal spring. The state variable of

an inductor is its current iL(t).

The energy stored in an inductor is in the magnetic field surrounding its

conductors, and it is known as magnetic field energy. The stored magnetic

field energy can be expressed as

EEEm(t) =
L

2
i2L(t). (7)

As in the arguments about a spring k, attempts to suddenly change the

current flowing though an inductor would require an infinite power source.

However, one can suddenly change the voltage across an inductor. An ideal

inductor is shown in Figure 6.

Transformers

If two coils of wire are installed very close to each other so that they share

the same core without flux leakage, an electric transformer results, as shown

in Figure 7.

A transformer is a four-terminal element and two equations are needed to

describe its operation. The equations describing the operation of a trans-

former are

e34(t) = ne12(t), (8)

where n is the ratio of the number of turns between (3) and (4) to the number
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Figure 7: Circuit diagram of an ideal transformer.

of turns between (1) and (2), and

ib(t) =
1

n
ia(t). (9)

Equation (8) and (9) indicate that transformers do not store energy, rather

are used to couple circuits dynamically.

Resistors

The equation governing the operation of an ideal resistor is Ohm’s law. It

can be expressed as

e12(t) = RiR(t). (10)

Note that the voltage across a resistor and the current through it are related

“instantaneously” to each other. This is because there is no energy storage,

rather dissipation.

A circuit diagram of an ideal resistor is shown in Figure 8.

Examples of Circuit Analysis

Example 1

Develop the input-output differential equation for the circuit shown in
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Figure 8: Circuit diagram of an ideal resistor.

Figure 9: An R, L, C circuit driven by a current source.

Figure 9.

We use the so-called loop method to derive the equations describing the

circuit operation. As shown in Figure 9 there are two independent loops in

this circuit. We name the current flowing through these loops as iI and iII .

It is obvious that from loop I we can immediately write

iI(t) = is(t). (11)

For Loop II we can write Kirchoff’s voltage law as follows:

R2iII(t) + L
diII(t)

dt
+

1

C

∫
iII(t)dt + R1(iII(t)− is(t)) = 0. (12)

We can relate the capacitor voltage e0(t) with the capacitor current iII(t) as
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Figure 10: High-gain OpAmp with capacitor feedback.

follows

iII(t) = C
de0(t)

dt
. (13)

As a result, equation (12) can be rewritten as

(R1 + R2)C
de0(t)

dt
+ LC

d2e0(t)

dt2
+ e0(t) = R1is(t), (14)

or by rearranging we have

LC
d2e0(t)

dt2
+ (R1 + R2)C

de0(t)

dt
+ e0(t) = R1is(t). (15)

Example 2

The circuit shown in Figure 10 involves the use of a high-gain operational

amplifier (OpAmp) with feedback to achieve desired dynamic response in

automatic controllers. The gain ka of the OpAmp is negative, and its input

current ia is so small that it can be considered negligible. The objective is to

develop an input-output model for this circuit.

We use Kirchoff’s current law at node (2). This yields

iR(t) = iC(t), (16)
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because the current ia is assumed negligible. Equation (16) can be rewritten

as
ei(t)− e2g(t)

R
= C

d(e2g(t)− e3g(t)))

dt
. (17)

For the amplifier we have the following equation

e3g(t) = kae2g(t), (18)

or

e2g(t) =
1

ka
e3g(t). (19)

Combining equations (17) and (19) results in

ei(t)− 1

ka
e3g(t) = RC

d[(e3g(t)
ka

)− e3g(t)]

dt
. (20)

Rearranging yields

RC
[1− ( 1

ka
)]de3g(t)

dt
− 1

ka
e3g(t) = −ei(t). (21)

Considering that for an amplifier, ka is very large, we have

de3g(t)

dt
≈ −ei(t)

RC
, (22)

or

e3g(t) = −(
1

RC
)

∫ t

0−
ei(t)dt + e3g(0

−). (23)

The use of a capacitor in the feedback with a resistor at the input results

in an integrator with time constant RC, as shown in the block diagram of

Figure 11.

Reading Assignment

See separate file on textbook reading assignments depending on the text

edition you own. Read examples Handout E.8 posted on the course web page.
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Figure 11: Simulation block diagram of an integrator with time constant.
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