
Texas A & M University

Department of Mechanical Engineering

MEEN 364 Dynamic Systems and Controls

Dr. Alexander G. Parlos

Lecture 9: Linearization and Scaling –

Operating Points and Impedance Matching

The objective of this lecture is to give you an overview of the mathematical

method involved in linearizing the dynamics of nonlinear systems, in order to

express them in standard state-space form. Linearization allows us to analyze

complex dynamics using simple mathematics and analytical methods rather

than computer simulations.

Linearization

The differential equations of motion for most practically interesting sys-

tems are nonlinear. For example, most useful forms of damping contains

nonlinear terms. As mentioned before, it is much easier to deal with linear

models of a system than nonlinear ones.

Linearization is the process of finding a linear model of a system that

approximates a nonlinear one. Over 100 years ago, Lyapunov proved that

if a linearized model of a system is valid near an equilibrium point of the

system and if this linearized model is stable, then there is a region around this

equilibrium point that contains the equilibrium, within which the nonlinear

system is also stable. Basically this tells us that, at least within a region of

an equilibrium point, we can investigate the behavior of a nonlinear system

by analyzing the behavior of a linearized model of that system. This form of

linearization is also called small-signal linearization.

Assume that the nonlinear equations of motion for a system model with
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one controlled input, u, are expressed in the form

ẋ(t) = f(x, u). (1)

In equation (1) the derivatives of the state are relate to the state and/or the

control through a nonlinear relation f . In order to linearize this equation we

must first determine the equilibrium values of the system. The equilibrium

values for the state, x0, and control, u0 are such that the derivative of the

state vector is zero. That is, we can compute the equilibrium values by solving

ẋ0 = 0 = f(x0, u0). (2)

Equation (2) has two unknowns. Therefore, we must choose arbitrarily the

value of u0 and solve equation (2) for the equilibrium state, x0.

We now expand the nonlinear equation in terms of the perturbations from

these equilibrium values; that is, we let

x(t) = x0 + δx(t), (3)

and

u(t) = u0 + δu(t), (4)

then we can write the following linear approximation to the nonlinear dy-

namics (1)

ẋ0 + δẋ(t) ≈ f(x0, u0) + Fδx(t) + Gδu(t), (5)

where F and G are the best linear fits to the nonlinear function f at the point

(x0, u0). Canceling the equilibrium from both sides of equation (5) results in

δẋ(t) = Fδx(t) + Gδu(t), (6)

which is a linear model approximating the nonlinear dynamics at the point

(x0, u0).

If an analytical expression for f is available, then the best linear fits F and

G can be obtained through differentiation, as follows:

F =
∂f

∂x
|(x0,u0), (7)
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Figure 1: Laboratory scale magnetic ball levitator.

and

G =
∂f

∂u
|(x0,u0). (8)

In case when an analytical expression is not available, numerical differentia-

tion is performed, as shown in the following example.

Note:

For more details regarding linearization of nonlinear dynamics read the

handout A.5.

Example: Linearization of Motion in a Ball Levitator

Figure 1 shows a laboratory scale magnetic levitator, where one electro-

magnet is used to levitate a ball bearing. The physical arrangement of the

levitator is depicted in Figure 2.

The equation of motion for the ball is derived from Newton’s law as

mẍ(t) = fm(x, i)−mg, (9)

3



Figure 2: Model for a ball levitator.

where the force fm(x, i) is caused by the field of the electromagnet. Theoret-

ically speaking, the force is proportional to the inverse of the square distance

from the magnet, but the exact expression is difficult to derive. So, we do not

have an analytic expression for the force. However, the force can be measured

and plotted. Figure 3 shows the experimental curves for a ball with a 1 cm

diameter mass and a mass of 8.4 × 10−3 kg.

From the experimental curves we infer that at the current value of i2 =

600 mA and the displacement x1, the magnetic force fm just cancels the

gravity force mg = 82 × 10−3 N . The mass is 8.4 × 10−3 kg and the

acceleration of gravity is 9.8 m
sec2 . Therefore, the point (x1, i2) represents an

equilibrium point.

We now want to find the linearized equations of motion for this system.

First, we expand the magnetic force in terms of deviations from the equilib-

rium point (x1, i2), as follows:

fm(x1 + δx, i2 + δi) ≈ fm(x1, i2) + Kxδx + Kiδi. (10)

The linear gains Kx and Ki can be computed as follows. Kx is the slope (or
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Figure 3: Experimentally determined force curves.

derivative) of the curve in Figure 3 for i2 = 600 mA around the point x1.

This is found to be about 14 N
m . Ki is the change of force with current at the

value x = x1. This is found as

Ki ≈ 122 × 10−3 − 42 × 10−3

700 − 500
≈ 0.4

N

A
. (11)

So, the linearized force expression becomes

fm(δx, δi) = 82 × 10−3 + 14δx + 0.4δi. (12)

Considering that ẍ(t) = δẍ(t), the equation of motion (9) becomes

8.4 × 10−3δẍ(t) = 14δx(t) + 0.4δi(t), (13)

or

δẍ(t) = 1667δx(t) + 47.6δi(t), (14)

which is the linearized equations of motion about the equilibrium point.

We can select the state vector as x(t) = [δx(t), δẋ(t)] and the control

u(t) = δu(t). This selection results in the following state matrices

F =




0 1

1667 0


 , G =




0

47.6


 . (15)
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Amplitude Scaling

Amplitude scaling is usually performed by simply picking units that make

sense for the problem investigated. In selecting the units we try to make

the numbers of the problem comparable. For example, for the ball levitator

expressing the displacement in millimeters and the current in milliamps would

make the numbers easy to work with. A method for accomplishing the best

scaling for a complex system is first to estimate the maximum values for each

state and then scale the system so that each element varies between −1 and

+1.

The amplitude scaling is performed by defining the scaled variables for

each element: If

x′(t) = Sxx(t), (16)

then

ẋ′(t) = Sxẋ(t); ẍ′(t) = Sxẍ(t). (17)

We select the scaling Sx to accomplish our scaling objective outline above.

Time Scaling

Variables involving time are usually measured in units of seconds. Some-

times it is convenient to express time in other units. We define a scaled time

to be

τ = ω0t, (18)

such that if t is measured in seconds and ω0 = 1000 then τ will be measured

in milliseconds. The effect of time scaling is to change the differentiation as

follows

ẋ =
dx

dt
=

dx

d(τ/ω0)
= ω0

dx

dτ
, (19)

and

ẍ =
d2x

dt2
= ω2

0
d2x

dτ 2 . (20)
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If the original system is in state-variable (or state space) form

ẋ(t) = Fx + Gu, (21)

then the time scaled system is expressed as

ẋ(t) =
1

ω0
Fx +

1

ω0
Gu. (22)

Read example 2.25 on page 76 of the text.

Note:

For more on operating points read the handout A.5. For an exaple describ-

ing load (or impedance) matching read handout A.4.

Reading Assignment

See separate file on textbook reading assignments depending on the text

edition you own. Read examples Handout E.12 and Handout A.5 posted on

the course web page.
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