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HANDOUT A.5 - LINEARIZATION OF NONLINEAR DYNAMICS

Introduction

The dynamics of a physical system can be expressed in the following general form

( ))(),()(
.

tutxftx =       (1)
( ))(),()( tutxhty =       (2)

where the functions, ‘f’ and ‘h’ are any nonlinear function of the variables ‘x(t)’ and
‘u(t)’. It is very difficult to use a non-linear model for things other than simulations.
Therefore an approximate model is obtained by linearizing the non-linear model about
some operating point. To obtain this linearized model, the original variables are assumed
to deviate only slightly about the operating point.

Finding the equilibrium point

To obtain the equilibrium point, all the derivative terms in the governing equation are

equated to zero. In other words, in equation (1), 
.
x is equated to zero, i.e.,

0)(
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For a given input, ‘u (t)’ by solving equation (3), the value of ‘x(t)’ can be obtained. This
value of ‘x(t)’ for the corresponding value of the input, ‘u(t)’ is substituted in equation (2)
to obtain a value of ‘y(t)’. This set of ‘x(t)’, ‘u(t)’ and ‘y(t)’ is the operating point or the
equilibrium point of the system. Assuming that the equilibrium point does not vary with
time, we now have an equilibrium point consisting of the triplet ( )000 ,, yxu .

Taylor series expansion

From calculus it is known that if a function f(x1, x2) is to be expanded using Taylor’s
series about the equilibrium point (x10, x20), then the Taylor series expansion of the
function is given as
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Representing the Linearization technique in the form of a figure, we get
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(x0, f(x0, u0))
),( 00 uxf

       Equilibrium point

       
         

         x0           x

From the above figure it can be noticed that, the curve f(x, u) is linearized about the
equilibrium point )),(,( 000 uxfu and the result is a line tangent to the curve at the
equilibrium point. The equation of the straight line is obtained by the Taylor series
expansion. The linearity is valid only for a small interval around the equilibrium point as
shown in the figure. The higher order terms in the expansion are neglected.

Once the operating point of the system is obtained, the non-linear function given by
equation (1) is expanded using the Taylor series about the operating point, ( )000 ,, yxu  as
follows
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Define
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Differentiating the first equation of equation (5) with respect to time, we get
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Note that x0 is a constant, as we have assumed that x0 does not vary with time.

Since the variation of the variable ‘x’ about the equilibrium value ‘x0’ and the variation
of the variable ‘u’ about the equilibrium value ‘u0’ is very small, the terms ‘∆x(t)’ and
‘∆u(t)’ are very small and hence the higher order terms in equation (4) can be neglected.
Therefore equation (4) reduces to
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To linearize equation (2), expand the equation using Taylor series about the equilibrium
point, ( )000 ,, yxu
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At the equilibrium point, both ),( 00 uxf  and ),( 00 uxh are equal to zero. Therefore
equations (6) and (7) reduce to
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Equations (8) and (9) represents the linearized equations of the original nonlinear
equation given by equations (1) and (2).

What if ),,( 000 yux  is not an equilibrium point?
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(Hint: ),( 00 uxf  and ),( 00 uxh are not equal to zero.)

The above procedure is outlined with the help of the following example.

Example 1

Consider a simple pendulum. The equation of motion for simple pendulum is given by
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The reduction of the above equation into a system of first order equations can be
accomplished by letting
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The first order equations of motion are given as
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To obtain the equilibrium point, the derivative terms are equated to zero. In other words
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It can be seen that the equilibrium points do not vary with time and it can be also
concluded that there are infinite equilibrium values for x1. Usually the first equilibrium
value is chosen, i.e., the equilibrium value at n = 0 is chosen. Therefore the equilibrium
point is given by
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From equations (8), it can be seen that, the first equation is linear in nature. So this
equation need not be linearized. The second equation however contains a nonlinear term,
‘sin(x1(t)’.  So expanding the second equation of equation (8) using the Taylor series
about the equilibrium point 01 =x and x2 = 0, we get
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Therefore the linearized equation of motion for the simple pendulum is given by the
following two first order differential equation
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General Procedure for linearization

In general the state-space model of a physical system with one input and one output is
given as
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where the variable ‘x’ is the state vector given by
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The operating point of the system is calculated by following the procedure outlined in the
previous example. Let the equilibrium point be given as ( )0002010 ,,,...,, yuxxx n .

Let the equilibrium values of the states be represented by a vector X0, which is given by
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Generalizing the equation (6), i.e., if the function is dependent on ‘n’ variables, then the
Taylor series expansion of the ith entry fi of the function f is given as
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Even in the above equation, the higher order terms are neglected.

Therefore the Linearized state space equation is given by
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The same procedure can be followed to linearize the second equation of equation (10),
which is given as
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Equation (11) and equation (12) together represent the linearized state-space model of the
physical system. They can be represented as
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The coefficient matrices multiplying the states are known as the Jacobian matrices of the
system.

The general linearization procedure is further explained with the help of the following
example.

Example 2

Consider the following system.

          x(t)
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The governing differential equation of motion for the above system, when written in
matrix format is given as
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The above equation is a second order differential equation. Let
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Using the above relations, reducing equation (13) to a first order one, we have
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The above equation is of the form
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It can be seen that equation (13) is non-linear because of the trigonometric terms. To
linearize the equation, first the equilibrium point is obtained. Equating the derivative
terms to zero, we get
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Let the equilibrium point be represented by a vector X0, given by
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Note that, the fourth element in the right hand side vector has a 4

.
x term. Even this term

has to be equated to zero. In other words to find the operating point, all the derivative
terms have to be equated to zero. Equation (14) can be further reduced to the form
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To linearize equation (16), apply Taylor’s theorem about the equilibrium point and we
get,
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where X0 is the equilibrium point of the system. Since at the equilibrium point X0, )(
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From equation (14), it can be concluded that, at the equilibrium point X0, since 
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x  = 0, B

is equal to zero at the equilibrium point. Therefore equation (18) reduces to
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The value of the matrix ‘A’, at the equilibrium point is given by
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Evaluating each of the above at the equilibrium position we get,
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Therefore the linearized equation is given by
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Assignment

For the system shown below

      θ   L1  String

    φ        L2, M      Bar

a) Derive the governing differential equations of motion.

b) Find the operating point or the equilibrium point of the system.

c) Linearize the differential equation about the equilibrium point.

(Note: Assume that the string is always taut.)

Recommended reading

“Feedback Control of Dynamic Systems” 4th Edition, by Gene F. Franklin et.al – pp –68-
74.


