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HANDOUT A.4 - MODELING EXAMPLES OF DYNAMIC
SYSTEMS

Introduction

This handout consists of various modeling examples of dynamic systems. It does not
cover the entire subject. It is always advisable for you to practice more such problems to
become familiar with modeling of dynamic systems.

Example 1: DC Servomotor

The dc motor is one example of an electro-mechanical system. The circuit diagram of the
armature controlled dc motor is given as follows:

 Rm      Lm         Fixed field

 +       if
         im

ea  em

 -

TL, ω

Description of the variables used.

im = Armature current
ea = Applied voltage
Rm = Armature resistance
Lm = Armature inductance
ω = Speed of the motor
em = Back emf
Tm = Torque developed by the motor.

Note that, the time dependence of all the variables is ignored. Unless specified explicitly,
all variables are time dependent.

The developed torque of a dc motor is proportional to the magnitude of the flux due to
the field current if and the armature current im. Therefore the developed torque can be
expressed as

mm iKT φ3= .       (1)
For any given motor, the only two adjustable quantities are the flux and the armature
current. There are two modes of operation of a servomotor. For the armature-controlled
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mode (circuit diagram shown above), the filed current is held constant and an adjustable
voltage is applied to the armature. In the field control mode, the armature current is held
constant and a voltage is applied to the field circuit. Since the above circuit is armature
controlled, the filed current is held constant and therefore the equation (1) can be
represented as

mTm iKT = ,       (2)
where KT is called the motor torque constant.

When the motor armature is rotating, a voltage em is induced that is proportional to the
product of the flux and the speed of the motor. Since the polarity of this voltage opposes
that of the applied voltage, this voltage is called the back emf. Since the flux is held
constant, the induced voltage is proportional to the speed of the motor ωm. This can be
represented as

dt
dKKKe bmbm

θωωφ === 1 ,       (3)

where Kb is called the generator constant.

From the circuit diagram shown above, the circuit loop equation can be written as

mmm
m

ma eiR
dt

diLe ++=       (4)

To write the mechanical equations of motion, consider the diagram shown below.

Tm TL
     Motor    Load
       

Let ‘J’ be the inertia of the entire system and ‘B’ be the damping constant. Then writing
the torque balance equation, we get

dt
dB

dt
dJB

dt
dJTT Lm

θθωω +=+=− 2

2

      (5)

Combining equations (2) and (5), we have

LmT TiK
dt

dB
dt

dJ −=+ θθ
2

2

      (6)

Similarly combining equation (4) and equation (3), we get
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dt
dKiR

dt
di

Le bmm
m

ma
θ++= .       (7)

Equations (6) and (7) represents the governing equations of motion of the dc motor. Let
the individual states of the system be given as

mix
dt

dx

x
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      (8)

From the first two equations of equation (8), we get

21

.
xx = .       (9)

From equation (8) and equation (6), we have
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    (10)

From Equation (8) and equation (7), we get
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    (11)

Combining equations (9), (10) and (11) and representing them in matrix format, we get
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    (12)

The above equation is in the form of
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.wu GBAXX
.

++=

Where ‘w’ is the disturbance to the system.
From equation (12), it can be concluded that the applied voltage ‘ea’ is the input to the
system. The developed torque by the dc motor is the output to the system. Representing
equation (2) in matrix format, we have
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KiKT TmTm     (13)

Equations (12) and (13) represent the state space model of an armature controlled dc
motor.

Characteristics of a DC motor
Combining equations (3) and (4), we get

dt
diLiReK

dt
di

LiRee

m
mmmamb

m
mmmam

−−=⇒

−−=

ω
    (14)

But we know that from equation (2) that mTm iKT = . Substituting the value of ‘im’ in
equation (14), we have

dt
di

L
K
T

ReK m
m

T

m
mamb −−=ω .     (15)

Assuming a very low inductance, the equation (15) can be rewritten as
mam TKeK 21 −=ω     (16)

The torque speed curve for the armature controlled DC motor is as shown below.
    T

   Operating point      Load torque curve
 (constant torque)

      Torque
    Input torque curve

Speed

Torque-speed curve of a DC motor
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Load matching

The things that are usually regarded as important about an electric motor are its
maximum speed and maximum power output. Another is the motor’s power and torque
characteristic, which are often overlooked, but these need to be considered carefully
because the torque and the power characteristics determine whether or not the motor can
drive the attached load correctly. To illustrate, a motor driving a fan might require the
same power output as a motor driving a conveyor belt. However, the torque and power
characteristics required of the motor would be completely different. To be able to
successfully match a motor to a load we need to consider carefully the characteristics of
the load. In other words, in the torque-speed curve of the motor, the load torque and the
input torque curves must intersect. The point of intersection represents the condition at
which the motor tends to operate.

There are different types of load, each giving different characteristics and to select the
correct motor, the knowledge of the load profile is essential. For example the most
commonly found in the industry is the quadratic torque load. In this case the torque varies
as the square of the speed, whereas the power varies as the cube of the speed. This is the
typical torque and speed characteristics of a fan or a pump.

Consider the following diagram

Power Input Power output
         Motor

(Electrical) (Mechanical)

From the above figure it can be seen that, the power input must be equal to the power
output. But since the Motor does not operate at its full efficiency, the following relation is
obtained.

η

mech
outElec

in
PP = .

But since the power output is equal to the product of the load torque and the speed of the
motor,

η
ωmLElec

in
TP .

= .

From the above relation it can be concluded that, for a rated speed and voltage of the
motor, there is a fixed amount of load torque that the motor can drive.
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Example 2: A Liquid-Level system

      qi

       A1

      h1          R1 R2    h2

q1     q2

The above figure represents a two-tank liquid level system.

Definitions of the system parameters

qi, q1, q2 = Flow rates of fluid
h1, h2 = Heights of the fluid level is the tanks
R1, R2 = Flow resistance
A1, A2 = Cross-sectional area of the tanks.

The basic linear relationship between the flow rate ‘q’, change in the height, ‘h’ and the
resistance to the flow, ‘r’ is given by

r
hq =  = flow rate through orifice.

The mass balance equation of the system can be written as,

Rate of fluid storage in the tank = (tank input flow rate) – (tank output flow rate) = net

flow rate = 
dt
dhA

Applying the above two relations to tanks 1 and 2, we have
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    (14)

Let the individual states of the system be

22

11

hx
hx

=
=

    (15)

The levels of the two tanks are the output of the system, i.e., y1 = h1 and y2 = h2.
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From equations (14) and (15), the state space model of the system can be written as
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Example 3: A Thermal System

Consider the simple thermal system shown below.

Mixer

Liquid in

Temperature
Ti

H
Liquid out

Temperature T
Heater

Assume that the tank is thermally insulated and the liquid in the tank is kept at uniform
temperature by perfect mixing with the help of a mixer. Assume that the steady state
temperature of the incoming fluid is Ti and that of the out flowing liquid is T. The steady
state thermal input rate from the heater is H and the liquid flow rate is assumed to be
constant.

Let ∆H be a small increase in the thermal input rate from its steady state value. This
increase in thermal input will result in the increase in the thermal output flow rate by an
amount ∆H1 and an increase in the thermal storage rate of the liquid in the tank by an
amount ∆H2. Consequently, the temperature of the liquid in the tank and the out flowing
liquid rises by ∆T. Since the insulation is perfect, the increase in the thermal output flow
rate is only due to the rise in temperature of the out flowing liquid and is given by

TmCH p ∆=∆ 1     (16)

where ‘m’ is the liquid flow rate and ‘Cp’ is the specific heat of the liquid.
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Let us define the thermal resistance as

pmC
R 1= .

Therefore equation (16) reduces to

R
TH ∆=∆ 1     (17)

The rate of heat storage in the tank is given by

dt
TdC

dt
TdMCH p

)()(
2

∆=∆=∆     (18)

where ‘M’ is the mass of the liquid in the tank, 
dt

Td )(∆  is the rate of rise of temperature

in the tank and ‘C’ which is equal to the product of ‘M’ and ‘Cp’ is called the thermal
capacitance. Therefore the heat flow balance equation or the energy balance equation can
be stated as, ‘ the thermal increase in the input must be equal to the sum of the thermal
increase in the output and the thermal increase of the liquid stored in the tank’. For the
above system the energy balance equation is given by

dt
TdRCTHR

dt
TdC

R
TH

HHH

)()(

)(
21

∆+∆=∆⇒

∆+∆=∆

∆+∆=∆

    (19)

The third equation of equation (19) describes the dynamics of the thermal system with the
assumption that the temperature of the incoming fluid is constant.



MEEN 364 Parasuram
August 5, 2001

9

Example 4: A Hydraulic system

 y

Load
Piston M, f

Spool    x

Displacement

To sump     From high To sump
 Pressure source

The above figure shows a simple hydraulic actuator, in which the motion of spool
regulates the flow of oil to either side of the power cylinder. When the spool moves to the
right, the oil from the high-pressure source enters into the power cylinder, on the left of
the power piston. This creates a differential pressure across the piston, which causes the
power piston to move to the right, pushing the oil in front of it to the sump. The oil is
pressurized by a pump and is recirculated in the system. The load rigidly coupled to the
piston moves a distance ‘y’ from its reference position in response to the displacement ‘x’
of the valve spool from its neutral position.

There exists a nonlinear relationship between the volumetric oil flow rate ‘q’ into the
power piston and the differential pressure ‘∆p’ across the piston for small values of spool
displacement ‘x’. The relationship between ‘q’, ‘x’ and ‘∆p’ may be written as

),( pxfq ∆= .     (20)

Expanding the above equation into Taylor’s series about the normal operating point
),,( 000 xpq ∆  and neglecting all the terms of second and higher derivatives, we get
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    (21)

For this system, the normal operating point corresponds to q0 = 0, ∆p0 = 0, x0 = 0,
therefore the equation (21) reduces to
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Equation (22) gives a linearized relationship among ‘q’, ‘x’ and ‘∆p’.

Assuming leakage and compressibility flows to be negligible, the rate of oil flow into the
piston is proportional to the rate, at which the piston moves, i.e.,

.
yA

dt
dyAq ==     (23)

where A is the area of the piston.

The force on the piston is ‘Ap’ which moves the load consisting of mass ‘M’ and viscous
friction with coefficient ‘f’. Writing the Newton’s second law motion (or the force
balance equation), we have

...
yfyMpA +=∆     (24)

From equations (22) and (23), we get
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Substituting the value of ‘q’ from equation (23) in equation (25), we have
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Taking the Laplace transform of the second equation of equation (26), we get







++

=⇒

++=

s
K
AfMs

K
AK

sX
sY

ssY
K
AfsYMssX

K
AK

)(
)(
)(

)()()()(

2

2
2

2

1

2

2
2

2

1

    (27)



MEEN 364 Parasuram
August 5, 2001

11

The second equation of equation (27) represents the transfer function between the input
‘x’, which is the displacement of the spool and the output ‘y’, which is the displacement
of the load attached to the piston.

The second equation of equations (26) represents the governing differential equation of
the system. To denote the equations in the state-space form, let the states be defined as

2
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xy

xy
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=
    (28)

From the above relations it can be concluded that

.21
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xx =     (29)

Substituting the relations given by equation (28) in the second equation of equation (27),
we get
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    (30)

Representing the equation (29) and the third equation of equations (30) in the matrix
format, we have
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The output of the system is the displacement of the load, ‘y’, for the given input ‘x’.
Therefore representing the output equation in matrix format, we get
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Equation (31) and the second equation of equation (32) represent the state-space model of
the hydraulic model discussed above.
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Example 5: A Mechanical system

       I

    + x - direction

               k                             k
+ y - direction

                                            m

The Disc with mass moment of inertia ‘I’ rotates in the counterclockwise direction. The
block of mass ‘m’ moves a distance of ‘y’ units from the static equilibrium position in the
positive y-direction.

From the above figure, it can be seen that the system has two degrees of freedom. One is
the rotation of the disc and the other the linear displacement of the block. Let the two
degrees of freedom be represented as ‘θ’ and ‘y’, respectively.

 The next step is to determine the velocity and acceleration components of the block and

disc. The linear velocity and the linear acceleration of the block are given by ‘
.
y ’ and

‘
..
y ’ respectively. Similarly the angular velocity and angular acceleration of the disc are

given by ‘
.

θ  ‘ and ‘ 
..
θ  ‘ respectively. This stage is called the kinematics stage.

The next step is to draw the free body diagram of the block and the disc. This stage is
called the kinetics stage.

Free body diagram of the block

    Fs

   m

      
..
ym
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Note that the gravity force is not considered in the free body diagram. The reason for this
is that ‘y’ is considered from the static equilibrium position and hence the spring force at
the equilibrium position is cancelled by the weight of the block.

Writing the Newton’s second law of motion for the block, which states that sum of all the
forces acting on the block must be equal to the product of its mass and acceleration.

0
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Fym
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    (33)

Since the disc is rotating in the counter clockwise direction, there is an elongation in the
right hand spring by an amount of ‘Rθ’ units. The block is assumed to move down, which
in turn will again produce an elongation in the right hand spring by an amount of ‘y’
units. Therefore the total elongation of the right hand spring due to the movement of the
disc and the block is ‘Rθ + y’ units. Therefore the spring force is given by

)( yRkFs += θ

Therefore the equation of motion of the block is given by

0)(
..

=++ yRkym θ     (34)

Free body diagram of the disc

      Fs1 Fs2

Taking moments about the center of the disc, we get
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The third equation of equation (35) and equation (34) together represent the governing
differential equation of motion for the system defined.
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To represent the above-derived differential equations in state-space form, the states of the
system have to be defined. Let the states be given by
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From the above relations the following two state equations can be derived
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Substituting the relations given by equation (36) in equation (34), we get
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Similarly substituting the relations given by equation (36) in the third equation of
equations (35), we have
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Representing the equations (37), the third equation of equations (38) and the third
equation of equations (39) in the matrix format, we have
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If the output of the system is the displacement of the block, then representing the output
relation in the matrix format, we get
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Equation (40) and equation (41) represent the state-space representation of the above
system.
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Assignment

1) An electro-mechanical actuator contains a solenoid, which produces a magnetic force
proportional to the current in the coil, iKf i= . The coil ahs resistance and inductance.

a) Write the differential equations of performance.
b) Write the state equations.

   l1 l2

xa xb

+          M1
         i         L
e            Solenoid

-         R     M2

        B1         K2         B2
       K1

2) Problems 2.1, 2.3, 2.8, 2.20, 2.22 in “Feedback Control of Dynamic Systems” 4th

Edition, by Gene F. Franklin et.al.

Recommended reading

“Feedback Control of Dynamic Systems” 4th Edition, by Gene F. Franklin et.al – pp 22-
68.
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