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Abstract

The problem of regulating the transmission rate of
an available bit rate (ABR) traffic source in an ATM
network is ezamined. Of particular interest is linear
quadratic (LQ) rate regulation based on estimates of the
round-trip propagation delay. The round trip delay is
estimated using a nonlinear least mean square (NLMS)
algorithm. Simulation results are used to demonstrate
the method.

1. Introduction

Available Bit Rate (ABR) service defined in ATM
standards [5]. is to be used to support applications
that can accommodate excess network capacity. This
is done by adjusting the source data transmission rate
based on the available resources in the network. To
do so, information of the current network status is re-
turned to the source. This state-of-affairs results in
a closed-loop feedback system. For feedback control
schemes, the time-delays incurred in the feedback path
and the temporal variation in the link capacity are con-
sidered to be problematic features. Therefore, success-
ful ABR source rate control depends upon the effec-
tiveness of the controller to overcome these delays and
to adapt to the temporal variations in the excess band-
width.

Developing a good rate control mechanism for ABR
service is a challenging task and it has been the focus
of many recent papers, especially in the ATM forum
[1, 4, 6, 8]. These proposed schemes use explicit rate
indication mechanism. They differ primarily in the way
congestion is monitored and in how an explicit rate
is computed. Most of these algorithms pose heuristic
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solutions to the problem. As such, these methods do
not easily relate the resulting traffic features with the
control action. Analytical studies have been presented
for a proportional-derivative (PD) feedback controller
for a congested node [2]. Controller parameters were
determined using a pole-placement procedure.

In this work, the problem of regulating available bit
rate (ABR) traffic is examined. The objective is to
regulated the source rate based on the magnitude of
the excess capacity. To this end, a LQ regulator is
developed. In addition the problem of estimation of
the time-delay in the control loop is examined. The
paper is structured as follows. Section 2 describes the
problem, the buffer and the controller model used. The
control methodology is presented in section 3. Section 4
presents a delay estimation method based on the NLMS
algorithm. Finally, in section 5 concluding remarks are
given.

2. Problem Statement

For a given virtual circuit (VC), the focus is on con-
trollers that maintaining a prescribed backlog level.
The queue length is chosen as an indicator of conges-
tion. The per-VC model is shown in Figure 1 where q is
the buffer occupancy, ¢° is the target buffer occupancy,
 is the available service rate, Dy is forward delay, and
D, is backward delay.

In each time slot, the switch measures the queue
size. Then a RM cell is sent back to the source and
an new source rate £(n) is calculated. This rate equals
to the number of cells transmitted by the source in
the nondimensional time interval [n,n + 1). At time
n, the buffer occupancy is g(n) and p(n) is the avail-
able transmission capacity. The buffer occupancy at
the next time step g(n + 1) is equal to the sum buffer
occupancy ¢(n) and the net number of cells that have
entered the buffer £(n) — u(n).
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q(n+1) = maz(0, g(n) + &{(n) —p(@)] (1)

It is desired to control the rate based on the error
between the actual and target buffer occupancy. The
value ¢° is defined as the threshold value and the ex-
plicit rate is r(n + 1) is calculated following Benmo-
hamed and Meerkov [1].
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where D = Dy + Dy, a; and B are parameters of the
controller.

When the explicit rate is sent back to the source,
the source sends the cells at the rate £(n) the middle
value among PCR, MCR and received explicit rate
r(n+1— D)

&(n) = min[PCR, maz[r(n+1— Dy), MCR]] (3)

where, D; is the backward delay, PCR is the peak cell
rate, and MCR is the minimum cell rate.

3. LQ Regulation of the Source Rate

The controller is designed using the linearized ver-
sion of the Eqns 1-3. Under the condition that MCR =
0, PCR equals infinity, and » > 0, the explicit rate
and source rate are equal £ = r. For a step change in
available transmission capacity the source rate r should
approach p in the limit of n approaching infinity while
q approaches ¢°. Using Eqns 1-3 it can be shown that
Bp = — Yo Bx. Under the aforementioned condi-
tions, the simplified equations are

gn+1) 24(n) - §(n—1) +#(n+1- D)

(p(n) = p(n - 1)]

4)
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F(n+1) #(n) + u(n) (5)

where #(n) = r(n) — r(n — D), §(n) = q(n) — ¢° and
u is the control input. The regulator realization of the
control input uisu = - GTz. The gain and state
vectors are defined as

e ﬂD—1]T

G = [aw, a1, Po, B,

and
E(n) = [é(n)’ é(n_ 1)7 'F(TL), ’F(n_ l)v
-, Fn+1-D)"

The LQ-regulator is obtained by minimizing the
quadratic cost function J

J= Z 2T Sz + Pu?

n=0

(6)
subject to the constraints given by Eqns 4-5
z(n +1) = Az(n) + Bu(n) + C [u(n) — p(n - 1)] (7)

The matrix S is chosen suitably as a positive semi-
definite weight matrix and P is a positive constant.
Due to stochastic term u(n)—p(n—1), the state vector
may not be directly accessible for feedback. However,
a separation principle can be applied to the solution
of the regulator problem [9]. The regulator is designed
by setting u = 0 and the optimal gains G are obtained
from resulting problem. A Kalman filter can be used to
estimate the state vector z in the presence of the noise
signal imposed by the excess rate x. The optimal gain
G is expressed in terms of the solution of the algebraic
Riccati equation W is

G=(B"WB+P) "' BTWA ®)

where

W=S+4TW (I-B(B"WB+P)” BT) W4

Once G is determined, the full nonlinear equations are
used.

The results of computer simulations for the problem
of controlling a single ABR source connected to a sin-
gle node will be presented. The feedback coefficients
for the regulator are obtained using the linearized sys-
tem equations given by Eqns. 4 and 5. To obtain
the feedback gains the matrix Riccati equation is it-
erated till a steady state solution is reached, W(oo).
This result is used to obtain G(c0). Finally, using the
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Figure 2. {(n) for P=200 and D=6

computed gains the explicit rate £(n) and the buffer
occupancy ¢(n) are determined using Eqns 1-3. The
maximum and minimum rate, PCR and MCR, are oo
and 0 respectively.

In this simulation, the magnitude of the available
capacity p will be varied with time. This variation
will allow us to examine how well the ER tracks the
available capacity. The available link capacity p will
be comprised of a series of step functions of succes-
sive amplitudes 10, 20, and 30 mega cells per second
(Mcps), followed by a decrease to 20 and then 10 Mcps.
The value of p varies every 1000 time-units. The value
of the threshold ¢° is set to 10 cells. To minimize the
error g(n) — ¢° the weight matrix S is chosen such that
S11 = 1 is the only nonzero value. The rate of conver-
gence of rate and buffer occupancy can be controlled
by adjusting the relative magnitude of P from 200 to
20,000. The round trip delay is held constant D = 6.
The rate of the ABR source in each simulation is ini-
tialized to zero.

Figure 2 shows the simulation results of ABR rate
for P = 200. The time required for the source rate £
to reach y is about 115 time-units. The overshoot of
the explicit rate is 24.0% of u while undershoot of the
source rate are -87.5% of u when the service rate de-
creases. The buffer occupancy increases occur during
service rate decreases. In the case shown the maximum
buffer occupancy of 83 cells occurs during the under-
shoot period.

Figure 3 shows the simulation result for the case
where P = 20,000. Increasing the value of P slows the
response time of the rate regulator. Hence the time
required for the source rate to reach p is 400 time-units.
The overshoot of the source rate is 3.75% of u and -
39.3% when undershoots occurs. In the case shown the
maximum buffer occupancy of 113 cells occurs during
the undershoot period.

Hence as P is made smaller in value, the system
exhibits more oscillations but requires less time to con-
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vergence to y. When the available capacity decreases,
the buffer occupancy overshoots are smaller with the
smaller values of P. This is because weighting coeffi-
cient P is the penalty on the control input signal u(n).
Making P larger will result in a decrease of the mag-
nitude of u(n). This choice will cause the system to
react slower when the available capacity changes value.
Thus the convergence time will be longer. This implies
that the system needs a longer time to let the buffer
occupancy recover to the threshold, and therefore the
overshoot of g will be larger.

The delay D is the most important parameter that
effects the system’s behavior. With the increase in the
delay D, the system becomes harder to control and the
controlled variables exhibit greater oscillation, longer
convergence times and larger overshoot in the input
rate and buffer occupancy. If the source rate could
respond to the service rate perfectly, as shown in Figure
4, a phase shift of D time-units would be present.

When the available capacity increases, the decreased
magnitude of the buffer occupancy is Ag,, which equals
(2 — 1) D, or decreases to zero when Agy is greater
than or equal to ¢°. If the explicit rate increases prop-
erly, the queue size will increase to the threshold value
¢°. When the available capacity decreases, the phase
shift due to the delay causes most of the overshoot in
g(n). This overshoot is Aq, = (ug — u3)D = DAp. So
the larger the delay, the larger are the overshoot and
buffer occupancy.

The control algorithms will reduce or increase the
input rate to allow g(n) to recover to the threshold
value q°. No matter how fast and how good a control
algorithm is, it can not reduce the overshoot of the
buffer occupancy below Ag,.

4. Delay Estimation

The major assumption thus far has been that the
round-trip propagation delay is known a priori, and
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Figure 4. Buffer overshoot due to delay D

that this delay remains constant. In real networks, the
delay is usually not known. In fact data may even be
rerouted along a different path as a function of time.
These path changes result in variations in the time-
delay. In this section, a method for estimating the
round-trip propagation delay is developed. To this end,
the regulator will be used to compute the error between
the actual and estimated time-delays.

Using Eqns 4 and 5 the buffer dynamics can be in a
single equation. The actual round-trip delay is denoted
by the variable D and the estimated delay used to de-
sign the controller is M time-units. When M < D, the
system does yield a full rank characteristic polynomial.
Thus, the system is not controllable. The system is
considered robust to errors in the delay estimate if the
poles can be held within the unit circle when the delay
is varied over a prescribed range of values. The equa-
tion of §(n) that contains only the queue occupancy
and the available transmission capacity variable

g(n) 24(n—-1) - 4(n-2)

M

D Belin—k—1)—§(n—k-2)]

k=0

{aog(n -~ D —1) + ai§(n— D —2)}
M

k=0

Hence, the buffer occupancy equation is obtained

Table 1. Mean ans Standard Deviation of
the Buffer Occupancy

Delay(Given) | Delay(Actual) | Mean | Std. Dev.
M D My oy
2 2 99.996 3.39
2 5 99.872 13.75
2 10 101.154 58.13

9

~—

{u(n—l) - un-2) + Zﬂku(n—k—2)}
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where the only unknown parameter is the round-trip
propagation delay D

Errors in the choice of the round-trip delay can cause
instability in the system and/or large queueing delays.
A single ABR source will serve as the input to a sin-
gle node. The output rate of the source will be con-
trolled by the ER calculated by a queue occupancy
at a switch node. The available transmission capac-
ity at the node is throttled by the cross-traffic gen-
erated by a single variable bit rate (VBR) source at
the switch node [3]. The excess capacity is equal to
pu(n) = maz(VBR) — VBR(n) where VBR(n) is the
cell rate of the VBR source. The regulator is designed
using the performance weight S;; = 1, and the other
elements S;; are set equal to zero. The performance
weight of control input P is chosen equal to 2,000. This
number is chosen to make the explicit rate response to
the change of service rate faster and to keep the buffer
occupancy near the threshold. A buffer threshold ¢°
of 100 cells allows for enough backlog to obtain the
high link utilization. The regulator is designed using
M = 2. The estimated delay is chosen to be smaller to
ensure robust performance when the system is not fully
controllable. The mean and standard deviation in the
queue occupancy are shown in Table 1, Even though
the mean value is also equal to the target buffer oc-
cupancy, the variance of the buffer occupancy is quite
large. The range of variation is nearly equal to ¢°.
When the actual delay is 10 time-units, using a rate
controller designed for a round-trip delay of 2 time-
units yields an unstable system having roots equal to
1.03 £ ¢0.145.

The stability can be assured by adjusting the perfor-
mance index such that the designed controller is robust
under time-delay uncertainty. Figure 5 shows the ef-
fect of the performance index on the pole having the
largest magnitude. The five lines in the figure present
the location of the pole when P equals 20, 200, 2 x 103,
2 x 10%, and 2 x 10° respectively. The symbols track
the pole location, left to right, when the actual delay
D is equal to 2, 5, 10, 15, 20, 30, 40, and 50. The
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Figure 5. Effect of Performance Index on
the Largest Pole, M =2

controller is designed using an estimated delay M = 2.
For each value of P, instability ensures when the er-
ror between the actual and estimated delay exceeds a
threshold value. For higher values of P larger differ-
ence can be tolerated before onset of instability. Hence
when the delay is uncertain, P should be large enough
to assure robustness.

The simulation results illustrate that using an in-
correct delay value impacts system performance. For
small errors in the delay estimate, a robust controller
can be designed to yield acceptable results. However,
when larger errors occur, the time-delay must be es-
timated before a controller can be designed. Without
estimation of the delay, the large variance in the buffer
occupancy degrades the performance of the system. In
such a case, cells will face longer waiting times in the
queue or will be lost. For convenience, define

q(n) - 2¢(n—-1) + §(n-2)

M
+ D Bilan—k—1) - §(n—k—-2)]

k=0

Za(n) (10)

Z.(n) = —[aog(n — 1) + a1d(n —2)] (11)

v(n) (12)

~[un-1) - p(n-2)
M-1

+ Y Belu(n—k-2)— p(n—M-2)]

=0

Thus, Eqn 9 can be expressed as follows,

zqa(n) = ze(n—D) + v(n) (13)

where z,(n) is equal to the sum of the D lagged delay
version of z.(n) and the noise term v(n). The time-
shift operation z.(n — D) can be expressed as a linear
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convolution of z. and an unknown filter @(n). Using
the filter @ (n), Eqn 13 can be rewritten as,

Dumas

v(n) = z4(n) — E Wi (n)z.(n — k)

k=0

(14)

Since z, and x, can be directly measured, the func-
tion @ can be determined using the Nonlinear Least-
Mean-Square (NLMS) algorithm ([7]. The number of
taps used for w is equal to D4, + 1 where the largest
possible round-trip delay is Dyqez-

NEXOES v NOEXCERO)

B g P

An experiment is simulated using Eqns 1-3. The
actual round-trip delay set to D = 10, and the de-
sign delay M = 2. The excess capacity y is modeled
as Gaussian distributed random noise having a mean
value equal to 1000 cells and variance equal to 1 x 10%.
The buffer threshold go is set to 100 cells. The ini-
tial tap weight vector @(0) is set to zero. The weight
S11 = 1 and the remaining S;; terms equal zero. A
linearized equations were used to design the regulator.
The weight of the control signal P = 2 x 10%. The
relaxation parameter used in the NLMS algorithm is
A = 2x107% and Djmsy = 30. The controller was
updated every 5 time units.

The tap weights w; after 200 iterations is shown in
Figure 6. The delay is determine by location of the
maximum ;. The result differs from the ideal result
which is a pulse. This is because the noise signal v(n)
is the weighted sum of previous excess rates. Hence,
v(n) is temporally correlated.

As mentioned earlier, simulations were carried out
using VBR cross-traffic to modulate the excess capac-
ity. In the cases examined, the round-trip D propa-
gation delay varies as 5,10 and 20. The weight update



Table 2. Mean ans Standard Deviation of
the Buffer Occupancy

Delay | m, my oy o4
D w Est. | w/o Est. | w Est. | w/o Est.
5 99.95 99.87 9.27 13.75
10 | 100.14 | 101.15 6.32 58.13
20 ] 100.31 | unstable | 29.40 | unstable

interval is 5 sampling time-units and the initial delay is
M = 2. Table 2 presents the results of the buffer statis-
tics with and without delay estimation. It is shown that
delay estimation yields control results that are greatly
improved. When the estimated delay M = 2 and the
actual delay D = 20, the system is unstable. When
the delay estimation is applied, the system adapts and
converges to stability.

5. Conclusion

The simulation results demonstrate robustness to
delay when the input weight P is large and the de-
partures from the design delay are small. When the
delay error is larger, the system can become unstable.
It is shown that the round-trip propagation delay can
be estimated using an NLMS algorithm. Large values
of P should be chosen until the time delay is estimated.
After the time-delay convergence is reached, the value
of P can be decreased to obtain a faster response.
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