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Abstract-In this paper, the development of a 3-axis motion
simulator is described.  The simulator is used to test and
calibrate certain spacecraft instruments within a hardware-in-
the-loop environment.  A mathematical electromechanical model
of the simulator is developed. Moreover, a novel robust adaptive
nonlinear control law for the simulator is developed based on
Lyapunov stability theory. The controller can be made
adaptable to constant unknown parameters as well as robust to
unknown but bounded fast varying disturbances.  The motion
simulator actuators are Permanent Magnet Synchronous Motor
(PMSM) drives. The simulation and experimental results are
presented to verify the efficacy of the proposed control system
and the validity of the mathematical model of the simulator.

 I. INTRODUCTION

    The instruments used in a spacecraft are mission critical
real-time embedded systems, which have to be tested to
ensure reliable operation in space [1]-[3]. In order to verify
their operative correctness, an end-to-end system testing must
be carried out. Towards this end, a 3-axis motion simulator
can be used to test the operation of sun sensor, star sensor and
other gyroscopic instruments used in a spacecraft within a
space-like environment.  The motion simulator generates a
user defined 3-dimensional motion profile by using 3 PMSM
direct drive motors fixed along roll, pitch and yaw axes.
  In this paper, the mathematical model of this mechanical
structure is derived by means of calculating the angular
momentum of each rotating part with respect to its reference
frame. A compact mathematical model of the whole
electromechanical system is obtained by representing the
PMSM motor drives in the field orientation. There are
complex nonlinear couplings among three axes in the
mathematical model of the simulator, which may degrade the
control performance.
    In order to realize high performance motion control of this
highly nonlinear electromechanical system, the input-output
linearization approach can be used [4], [5]. However, in
practice, the model of the simulator is usually imprecise.
There are uncertainties in motor parameters due to
measurement errors and in load inertia due to change of the
payload. In order to overcome the effects of parameter
uncertainty on controllability of the plant, a few control
methods have been proposed, e.g. sliding mode control,
adaptive nonlinear control [6]-[12]. However, most of these
works concentrate on single motor driven actuator systems in
contrast to the proposed system which has 3 axes and is
highly nonlinear. The existing complexity of the system can
be aggravated with the appearance of more coupling terms in
the torque equation if the payload centre of gravity deviates
from the intersection point of the three axes. These torque
components are in addition to Centripetal and Coriolis torque
components, which have already been considered in the
modeling process.  Despite the presence of these torque
components which can be categorized as disturbances, the

system can be made effectively insensitive to disturbances
and parameter variations by adopting a robust adaptive
control law.  The efficiency and correctness of the proposed
control system are verified using simulation results and
laboratory experimental results.

II. THE STRUCTURE OF THE 3-AXIS MOTION SIMULATOR AND
HARDWARE-IN-THE-LOOP TESTING

  The structure of 3-axis motion simulator is shown in Fig. 1.
It is comprised of an outer gimbal, an inner gimbal, a test
table, three motors, counterweights and a base. The payload
is mounted on the top of the test table.  The outer gimbal
rotates around a vertical yaw axis, it is driven by a motor
located inside the base. The inner gimbal moves around a
horizontal pitch axis and is driven by another motor, which is
fixed on the outer gimbal. The third motor is fixed on the
inner gimbal and drives the test table which rotates about the
roll axis, which is perpendicular to the pitch axis. The yaw,
pitch and roll axes meet at a single point in space. The whole
structure is designed to be axi-symmetric. The
counterweights fixed in the inner gimbal are used to balance
the pay-load such that the center of gravity of the inner
gimbal and the payload lies on the pitch axis. The three
motors used are PMSM direct drive rotary (DDR) motors,

Fig. 1. 3-axis motion simulator
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which are installed along these three axes and are named roll,
pitch and yaw motors respectively.
    Primarily there are two kinds of 3-axis motion platforms.
The first platform is 3-axis air bearing with sensors,
actuators, and control electronics mounted on it. The second
is 3-axis servo table platform for sensors with control
electronics and actuators outside the platform, and the control
loop is closed through a digital computer that simulates
satellite dynamics and in turn drives the servo table. Air
bearing simulations are the most common throughout the
space industry for testing the satellite Attitude Control
System (ACS) as it is easy to implement. However, it has
many shortcomings for precise evaluation of the performance
due to undesirable air bearing torques comparable to control
torques and difficulties in simulating actual satellite inertia.
In recent times, precise servo table simulations have become
more common [3].
    A block diagram of Hardware-in-the-loop (HWIL)
simulation for the satellite ACS systems is shown in Fig. 2.
The main components of HWIL simulation include rotation
table, motion table controller, sensors, data acquisition and
Real Time (RT) simulator.
    This rotation table, namely motion simulator is used for
mounting and calibrating the performance of attitude sensors
(like sun, star sensors, and gyros). The motion table controller
includes motion control processor and electronics, it is driven
by track inputs, ..ei satellite’s attitude, angular rates and
angular acceleration, from the satellite RT simulator. Sensors
measure the attitude signals excited by the rotation table and,
through sensors-flight control processor interface, provide the
outputs to ACS computer for RT simulation. Data acquisition
processor logs in the data from sensors, motion controller,
and motion table for post analysis. The satellite dynamics are
simulated in real-time, based on a mathematical model of the
space environment, which includes atmospheric drag, solar
radiation pressure and magnetic field, the satellite rigid body
dynamics and certain additional ACS components. The
satellite position, rate and acceleration calculated from the

simulated satellite behavior in space are fed to motion
controller and they are used to drive the motion simulator to
excite those optical and inertial attitude sensors.

 III. DYNAMIC MECHANICAL MODEL OF 3-AXIS MOTION

SIMULATOR

   The simulator has three rotating parts, namely roll part
including payload and test table; pitch part including inner
gimbal, counterweights and roll motor; and yaw part
including outer gimbal and pitch motor. As shown in Fig. 3,
angles φ ,θ  and ψ  are denoted as roll, pitch and yaw angles
respectively and measured from their initial states.
Accordingly, the angular velocities about these three axes are

)(φω &
r , )(θω &p  and )(ψω &y . Note that n  is perpendicular to

rp plane. The angular velocity of rpn frame fixed on the
inner gimbal is,
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    The angular velocities of the simulator about three axes
expressed in rpn frame are,
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   The angular momentum of the roll part is,
    )( yprrr IH ωωω

rrvr
++=                                                    (3)

where the roll part is assumed to be axi-symmetric, and its
constant moment of inertia matrix is of the form

],,[ rpnrpnrrr IIIdiagI =  in the rpn frame. Therefore the

external torque i
rM

r
acting on the roll part is,
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where rrM  is produced by the roll motor, while

rpM and rnM   are acting as transverse forces on the bearings,

Fig. 3.  Axial representation of motion simulator based
on classical Euler angles
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Fig. 2. HWIL Simulation for the satellite ACS systems
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which connect the shaft of the inner motor. Combining  (1)
with  (4), we have,
    rrrrrr IIM )sincos( θθψθψφ &&&&&& −+=                              (5)

    Similarly, the angular momentums of the pitch part and
yaw are given by
    )( ypprp IHH ωω

rrrr
++=                                                 (6)

    yyypy IHH ω
rrr

+=                                                           (7)

where constant moment of inertia matrix of the pitch part is
],,[ pnppprp IIIdiagI = and yyI is yaw part moment of

inertia about the yaw axis.
   The rotation matrix from rpn  frame to the inertia frame is
given by
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where c  indicates cosine and s indicates sine. Using a
formation similar to (4), we can obtain the external torque

components i
pM

r
and i

yM
r

, which act on the pitch part and
yaw part, in rpn  frame and inertia frame respectively.
Among these torque components, we have

    
θθψ

θψφθ

csIIII

sIIIM

pnrpnprrr

rrpprpnpp
2)(

)(

&

&&&&

−−+

+++=
                             (9)

    
)2)((

)()(

2 θθψθψ

θθφθφψ

scIIII

scIIIIM

pnrpnprrr

rrpnrpnyyyz

&&&&

&&&&&&

−−−++

−+++=
                          (10)

where ppM  and yzM are produced by the pitch and yaw
motors respectively.
    The mathematical model of the motion simulator can be
obtained by combining (5), (9) and (10):
    MT f =−τ                                                                     (11)

where T
emyempemr TTT ][=τ  is demanded  torque vector of

the three motors; T
yzpprr MMMM ][=  is the load torque

vector. Disturbance torque vector T
fyfpfrf TTTT ][= is

comprised of friction, external disturbances and additional
coupling torques due to unstructured uncertainties in
modeling process, e.g. moment of inertia matrix rI being not
diagonal because of the payload’s uncertainty, both in its
shape and location on the test table and the non-orthogonality
of yaw and roll axes about the pitch axis.
    The mathematical model (11) gives the relationships
between motor torques and rotational angles about three axes,
which are directly associated with the payload’s attitude
variables expressed with Euler’s angles [13]. This makes it
convenient to control the motion simulator within a satellite
based reference frame.

 IV. MATHEMATICAL MODEL OF ELECTROMECHANICAL
SYSTEM

    In synchronous d-q rotor reference frame, the PMSM
motor equations can be written as,
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where ypri ,,=  ( ypr ,, denote roll, pitch and yaw motors);

diu , qiu are stator voltages; iR , diL  and qiL  represent stator

resistance and motor d and q axis inductances; qidi ii ,  are d
and q axis currents; iλ is flux linkage of the rotor magnet;

iω , iP  and emiT  are rotor speed, number of pole pairs and
electromagnetic torque of  the motor respectively.
   Rearranging (11), we have
    τ=++ fTqqqCqqH &&&& ),()(                                           (13)

where Tq ][ ψθφ= is the position vector. )(qH  is the

simulator inertia matrix which is a symmetric positive
definite matrix.
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    The mathematical model of the electromechanical system
can be obtained by combining (12) and (13) as
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    By differentiating (13), the input-output linearization of
MIMO system (14) can be carried out as follows,
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where B  and D are diagonal matrices and are described by
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    As the total relative degree is the same as the order of the
system (14), there is no internal dynamics.

 V. ROBUST ADAPTIVE NONLINEAR TRACKING CONTROL
DESIGN

    Now the control task is to get the output q  to track a

specific time-varying 9-dimensional vector, Tqqq ][ ∗∗∗∗ = &&&q ,
i.e. a desired trajectory based on satellite attitude dynamics.
Assume motor parameters and simulator’s moment of inertia
matrices are unknown, disturbance vector fT is unknown but

has known bounds.
    For the outputs di and q of the system (14), two sliding
surfaces 1s  and 2s  are defined as follows,

    ∫+=
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where ∗−= ddd iii~ , ∗−= qqq~ ; ∗
di  and ∗q  are reference

values of di and q ; 1λ  and 2λ  are strictly positive constant
diagonal matrices.
    In order to select a suitable Lyapunov function for entire
system and therefore to obtain a suitable control law, the
following two functions are defined,
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where dA  and )(qH  are symmetric positive definite
matrices. Differentiating both sides of (18) and (19), and
using (15), yields
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where 61 ~ YY  are known matrices based on ∗
dqd iii ,, , ∗qq,
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di& and ∗q&&&  (see the Appendix). 6Y  contains du and is

assumed to be known as it is based on (22). 61 ~ aa  are
parameter vectors of uncertain  parameters and their
combinations,
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   Taking the control law to be
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where 1DK  and 2DK  are constant positive definite diagonal
matrices; 3DK  is a positive diagonal matrix; )6~1(ˆ =ja j

and D̂  are the estimated parameter matrices.
   By substituting the control law in (20) and (21), we have
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where the known function fiD TjjK &−≥),(3 , ( 1=j , ri = ;

2=j , pi = ; 3=j , yi = ), thus 3DK can be used to
compensate time-variable disturbances. Parameter estimated
error iii aaa −=ˆ~ .
    Note that D is a diagonal matrix, we have
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where 7Y  and 8Y  are known matrices (see the Appendix).
Parameter vectors 7a and 8a are given by,
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where iΓ is a symmetric positive definite matrix.
    Differentiating (27) and using (24) and (25), we have,
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    The parameter estimation update rules can be described as
follows

    1ˆ sYa T
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Thus, we have
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    This means that system output errors converge to the
sliding surfaces 01 =s  and 02 =s  as defined in (16) and

(17). Moreover iâ is bounded. Therefore, both global
stability of the system and convergence of the tracking error
are guaranteed by the developed robust adaptive control law.

 VI. SIMULATION  RESULTS

  The performance of the developed control law is
investigated with respect to tracking error and robustness
using computer simulations.
     The desired trajectories are )sin( tAy iii ω=  and their

derivatives, where θφ,=y andψ ; 1.0=iA rad; 0.2=rω rad/s;

5.1=pω rad/s; 0.1=yω rad/s, and 0=∗
di .

    Also assume the initial positions and velocities are
3.0)0( =φ rad; 2.0)0( =θ rad; 1.0)0( =ψ rad; 3.0)0( −=φ&

rad/s; 2.0)0( −=θ& rad/s, 1.0)0( −=ψ& rad/s and the initial
accelerations are zero. A constant disturbance

T
fT ]202010[=  Nm is introduced at =t 5 s  and it lasts for

1 s .
      Actual plant and control parameters used in the
simulation are listed in the Appendix.

     The output q  track the desired trajectories ∗q  as shown in
Fig. 4 to Fig.7.

Fig. 4. Three axes position tracking

Fig. 5. Three axes velocity tracking

Fig. 6. Three axes acceleration tracking

    Simulation results show that the simulator can track the
desired trajectories about three axes perfectly, even with
disturbances and parameter uncertainty.
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Fig. 7. Three axes tracking error vectors q~,q~,q~ &&&

 VII. EXPERIMENTAL RESULTS

    Initial laboratory experiments are carried out on a single-
axis PMSM motor drive system, using a 32-bit floating-point
TMS320C31 digital signal processor (DSP) based motion
controller. The block diagram of the experiment system is
shown in Fig. 8. As this is a single-axis drive system, the
parameters of the robust adaptive control law developed for
3-axis motor drive system should be modified. The control
laws with modified parameters for the single-axis system are
as follows:
    11332211 ˆˆˆ sKaYaYaYu Dd −++=                                      (32)
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    2ˆ sYa T
iii Γ−=& , 8,7,6,5,4=i                                             (35)

where parameters 81 ~ aa and 81 ~ YY have forms similar to
their respective counterparts in the 3-axis system. (see
Appendix). The only exception is 4Y , which is associated
with coupling issues. However, the robust adaptive control
law of the single-axis motor system is similar to that of the 3-
axis motor drive system. Therefore preliminary investigation
on the performance of the proposed control law can be
carried out using the single-axis drive system
    The 4-pole permanent magnet synchronous motor shaft is
directly coupled to a position sensor and a dynamometer
which is used as a programmable load. The motor is supplied
by a three-phase voltage-source PWM inverter with a
switching frequency of 5 kHz.
    Actual motor parameters, their initial estimated values and
control parameters are listed in the Appendix.
    The desired trajectories are )3.0(sin40 t=θ  and its

derivatives and 0=∗
di . Assume that the initial position

0.0)0( =θ rad and the motor is initially at standstill. That

means initial velocity error 12)0( −=θ& rad/s.
    Position, velocity and acceleration have a well-defined
relationship. Therefore, velocity and acceleration can be

derived from position signal measured by a high-resolution
encoder. A lowpass filter is used for acceleration calculation.
A third order Butterworth filter is used for this purpose and
the cut-off frequency is 5 rad/s.
  Fig. 9 shows the motor shaft position, velocity and
acceleration tracking the desired trajectories. Fig. 10 shows
the control voltages du and qu . The motor control system
begins tracking at time =t 0 s . After lapse of few seconds,
output q  starts following the desired trajectories

∗q satisfactorily. At  =t 36 s , a constant positive disturbance
torque 6.0=fT Nm is introduced by the dynamometer and it
lasts 12 s . Fig. 11 shows an expanded view of the motor
output q . The currents di and qi  are shown in Fig.12. The
control voltages and currents are modified during the
disturbance but position, velocity and acceleration trackings
are unaffected. This shows the efficacy of the proposed
control law.
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Fig. 8. The block diagram of the experiment system

Fig. 9. Position, velocity and acceleration tracking

Robus t  Adap t ive  t r ack

Cont ro l le r

P W M

Genera t ion

Voltage

S o u r c e

Inver ter

P M S M

abc

qd

↓

qd

abc

↓

Pos i t ion

Sensor
dtd

D C

P o w e r  S u p p l y

θ

θ

0i d =∗

qi

di

∗
qu

∗
du

*
av
*
bv
*
cv

ai

bi

ci

av bv cv

∗q

ω

D y n a m o m e t e r

0 20 40 60 80 100
-40

-20

0

20

40

0 20 40 60 80 100
-20

-10

0

10

20

0 20 40 60 80 100
-20

0

20

40

Time (sec)

Po
si

tio
n 

 (r
ad

)
V

el
oc

ity
 (r

ad
/s

ec
)

A
cc

el
er

at
io

n 
(r

ad
/s

ec
2 )

558



 VIII. CONCLUSIONS

  The electromechanical model of a 3-axis motion simulator is
developed in this paper. Subsequently, using Lyapunov
stability method, a robust-adaptive control law, which adapts
to constant unknown parameters and behaves robustly against
unknown but bounded fast varying disturbances, is

developed. The results obtained from simulations have
proven the accuracy and effectiveness of the proposed control
law. Preliminary experiments have been carried out using a
single-axis drive system to show the efficacy of the proposed
control system. The experiment results have proven the
correctness and robustness of the control law.

APPENDIX

1. Actual plant parameters used in the simulation are
3=iP , Ω= 513.0iR , mHLdi 74.4= , mHLqi 51.9= ,

turnWbi ⋅= 278.1λ , ypri ,,= ;
2

1 3.3 mKgI ⋅= , 2
2 2.57 mKgI ⋅=

2
3 0.45 mKgI ⋅= , 2

4 3.154 mKgI ⋅=
  Initial estimated parameters are
 04321 ==== IIII ,

Ω= 1.0iR , mHLL qidi 1.0== , turnWbi ⋅= 1.0λ
  Control parameters are chosen as

1),(1 =jjλ , 2),(2 =jjλ ; 0),(3 =jiKD , 3,2,1;3,2,1 == ji
]300,300,400[1 diagKD = ; ]700,800,1000[2 diagKD = ;

)8~1( =Γ ii is the identity matrix.

 2. Parameters of the PMSM motor used in the experiment are
2=P , Ω= 1.17R , HLd 278.0= , HLqi 369.0= ,

turnWb ⋅= 21.1λ , 2337.8 mKgeJ ⋅−= ,
VVrated 400= , Hzf rated 50= .

  Initial estimated parameters are
21.0 mKgJ ⋅= , Ω= 1.0iR , mHLL qidi 1.0== ,

turnWbi ⋅= 1.0λ
  Control parameters are chosen as

51 =λ , 82 =λ ; 101 =DK , 12 =DK , 01.03 =DK ;
)6~1(,41 =−=Γ iei ; )13~7(,51 =−=Γ iei .

3. Matrices 81 ~ YY  for the 3-axis motion system are
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Fig. 10. Control voltages du and qu
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Fig. 12. Currents di and qi
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4. 81 ~ YY  for the single-axis motion system are
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5. Parameters of the single-axis motion system are
Ra =1 , qLa =2 , dLa =3 , Ja =4
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