
MEEN 364 Parasuram
July 13, 2001

1

HANDOUT A.3 - FORMULATING THE STATE-VARIABLE FORM
OF DYNAMIC SYSTEMS

Introduction

Use of Newton’s law and free-body diagram typically leads to second order differential

equations, that is, equations that contain the second derivative such as
..
x . The differential

equations can be expressed as a set of simultaneous first order differential equations.
These are represented in the state-variable form as a vector equation

)()()(
)()()(
tDutty
tutt

+=
+=

Cx
BAxx

.

 (1)

where, for an nth order system, A is an n x n system matrix, B is an n x 1 input matrix, C
is a 1 x n row matrix referred to as the output matrix and D is a scalar called the direct
transmission term. The ‘A’, ‘B’, ‘C’ and ‘D’ matrices together define the system.

The column vector ‘x’ is called the state of the system. The state of the system is a set of
variables such that the knowledge of these variables and the input functions will, with
the equations describing the dynamics, provide the future state and the output of the
system. In other words, the state variables describe the future response of a system, given
the present state, the excitation inputs and the equations describing the dynamics. For
mechanical systems, the state vector elements usually consist of the positions and
velocities of the separate bodies.

The ordinary differential equations (ODE), which are obtained from the laws of physics,
not only can be converted to state-space form but also to transfer functions. This handout
explains the procedure to be followed to convert the ODE’s to state-space form. The
following diagram explains in detail the relationships between the various representations
of a physical system.

Laplace Transforms

Inverse Laplace Transforms

Case 1 of this handout Case 2 of this handout

Ordinary
Differential
Equation

State-Space

Transfer
Function

MEEN 364 Parasuram
July 13, 2001

2

Case 1: Formulation of the state-space equation from ODE

In general an nth order differential equation is given as

Ftya
dt

tdya
dt

tyda
dt

tyd
nnn

n

n

n

=++⋅⋅⋅++ −−

−

)()()()(
11

1

1 (2)

To reduce the above differential equation into a system of first order differential
equations, let

.)(

;)(

;)(
;)(

1

1

32

2

2

1

nn

n

x
dt

tyd

x
dt

tyd

x
dt

tdy
xty

=

•
•
•

=

=

=

−

−

From the first two equations we have

21

.
x

dt
dyx ==

which is a first order differential equation. Note that in the above equation, the
dependence of ‘t’ is implied and hence dropped from the equation.

Similarly from the second and the third equation, we get a first order differential
equation:

32

2

2

.
)(x

dt
yd

dt
dy

dt
dx ===

By following the above procedure for the next two equations, we get another first order
differential equation. In this manner, we get (n-1) first order differential equations. Now
substituting the above relations in equation (2) we have

1211

.
1211

.

11

1

1

xaxaxaFx

Fxaxaxax

Fya
dt
dya

dt
yda

dt
yd

nnnn

nnnn

nnn

n

n

n

−−⋅⋅⋅−−=⇒

=++⋅⋅⋅++⇒

=++⋅⋅⋅++

−

−

−−

−

MEEN 364 Parasuram
July 13, 2001

3

From the above equations, it can be concluded that the nth order differential equation has
been reduced to ‘n’ first order differential equation. Representing the first order
differential equation in the form of a matrix, we have

F

x

x
x

aaax

x
x

nnnn 

























⋅
⋅
⋅

+



























⋅
⋅
⋅



























−⋅⋅⋅−−
⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅

⋅⋅
⋅⋅⋅

=



























⋅
⋅
⋅

− 1

0
0

0100
010

2

1

11
.

2

.
1

.

which is similar to the first equation of equation (1), which is

)()()(
.

tutt BAxx +=

This is further explained with a help of a simple example.

Example 1

Consider the mass damper system shown below. The objective of this example is to write
the governing differential equation in the state-variable form.

 F

 m

 k c

The governing differential equation of motion for the above system is given as

Fkyycym =++
...

 (3)

MEEN 364 Parasuram
July 13, 2001

4

It can be seen that the above differential equation is a second order one. To reduce it to
first order differential equation

Let

2

.

1

xy
dt
dy

xy

==

=
 (4)

So in this case the states of the system are x1 and x2, which are equal to y and
.
y respectively. From the above two relations, it can be concluded that

21

.
x

dt
dyx == (5)

which is a first order differential equation.

Substituting the relations (4) in equation (3) we get the second first order differential
equation,

122

.

122

.

2

2

x
m
kx

m
c

m
Fx

Fkxcxxm

Fky
dt
dyc

dt
ydm

−−=⇒

=++⇒

=++

 (6)

Writing equation (5) and the last expression of equation (6) in the form of a matrix, we
have

F
x
x

m
c

m
k

x
x









+



















−−=













1
010

2

1

2

.
1

.

 (7)

If for example, we are interested in measuring the velocity of the mass, then the output of
the system is the velocity of the mass. In other words,

[] 







==

2

1
2 10

x
x

xy (8)

Equations (7) and (8), which are similar to equations (1) represent the state variable form
of the above-defined system. ‘F’ is the input to the system, ‘x1’ and ‘x2’, which denote
the position and velocity of the mass represent the states of the system, and ‘y’ is the
output of the system.

MEEN 364 Parasuram
July 13, 2001

5

Comparing equations (7) and (8) with equations (1), the state matrix A, input matrix B
and the output matrix C are given as

[].10

;
1
0

;
10

=









=












−−=

C

B

A
m
c

m
k

Example 2

Consider the electrical circuit shown below. We want to represent the governing
differential equation in state-variable form, where one of the states is the electric charge
q(t). Assume that the output voltage is the voltage across the resistance.

 R L
 +

 i
 V

 -

The governing differential equation is given by

Ri
dt
diLV += (9)

We know that

dt
dqi = (10)

Substituting equation (10) in equation (9), we have

dt
dqR

dt
qdLV += 2

2

It can be clearly seen that the above equation is second order differential equation.

MEEN 364 Parasuram
July 13, 2001

6

To reduce it to a state variable form, let the states of the system be defined as

;2

1;

x
dt
dq

xq

=

=
 (11)

From the above result, the first reduced order differential equation is

21

.
xx = (12)

Substituting the relations (11) in equation (9), we get the second reduced order
differential equation as

22

.

22

.

x
L
R

L
Vx

RxxLV

−=⇒

+=
 (13)

Representing equations (12) and (13) in the state variable form, we get

L
V

x
x

L
R

x
x









+



















−=













1
0

0
10

2

1

2

.
1

.

 (14)

Since the output is the voltage across the resistance, we have

2Rx
dt
dqRiRVy R ====

Representing the above equation in the matrix form, we get

[] 







=

2

10
x
x

Ry (15)

Equations (14) and (15) represent the state–space of the defined electrical system. The
‘A’, ‘B’, ‘C’ and ‘D’ matrices can be obtained by comparing equations (14) and (15) to
equation (1).

MEEN 364 Parasuram
July 13, 2001

7

Case 2: Canonical Forms- Formation of state-space equation from transfer function

There are various ways in which the ‘A’, ‘B’, ‘C’, ‘D’ matrices can be represented. These
various ways of representation are called the canonical form of the state-space. One such
form is the control canonical form. Consider the transfer function

n
nn

n
nn

asas
bsbsb

sQ
sPsF

+⋅⋅⋅++
+⋅⋅⋅++

== −

−−

1
1

2
2

1
1

)(
)()((16)

Then the control canonical form is

[] 0;

0

0
0
1

;

0100

0010
001

21

21

=⋅⋅⋅=



























⋅
⋅

=



























⋅⋅
⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅

⋅⋅
⋅⋅⋅

−⋅⋅⋅−−

=

Dbbb

aaa

n

n

C

BA

So once the transfer function is obtained, the control canonical form can be easily written
down based on the coefficients in the numerator and the denominator of the transfer
function.

The other canonical forms are

• Observable canonical form

• Jordan canonical form

• Modal canonical form

• Diagonal canonical form

Example 3

Write down the state-space matrices based on the given transfer function.

564
132)(23

2

+++
++=
sss

sssY

Comparing the above given transfer function to equation (16), we get

MEEN 364 Parasuram
July 13, 2001

8

;5
;6
;4
;1
;3
;2

3

2

1

3

2

1

=
=
=
=
=
=

a
a
a
b
b
b

Based on the values of the a’s and the b’s, the system matrices can be written as

[]132;
0
0
1

;
010
001
564

=















=















 −−−
= CBA

Using MATLAB to perform various state-space operations

1) To create a state-space system, given the state, input and the output matrices, use the
‘ss’ command in MATLAB. The online help in MATLAB gives the following:

help ss

 SS Create state-space model or convert LTI model to state-space.

 Creation:
 SYS = SS(A,B,C,D) creates a continuous-time state-space (SS) model
 SYS with matrices A,B,C,D. The output SYS is a SS object. You
 can set D=0 to mean the zero matrix of appropriate dimensions.

 SYS = SS(A,B,C,D,Ts) creates a discrete-time SS model with sample
 time Ts (set Ts=-1 if the sample time is undetermined).

 SYS = SS creates an empty SS object.
 SYS = SS(D) specifies a static gain matrix D.

 In all syntax above, the input list can be followed by pairs
 'PropertyName1', PropertyValue1, ...
 that set the various properties of SS models (type LTIPROPS for
 details). To make SYS inherit all its LTI properties from an

 existing LTI model REFSYS, use the syntax SYS =
SS(A,B,C,D,REFSYS).

 Arrays of state-space models:
 You can create arrays of state-space models by using ND arrays for
 A,B,C,D above. The first two dimensions of A,B,C,D determine the
 number of states, inputs, and outputs, while the remaining
 dimensions specify the array sizes. For example, if A,B,C,D are
 4D arrays and their last two dimensions have lengths 2 and 5, then
 SYS = SS(A,B,C,D)
 creates the 2-by-5 array of SS models

MEEN 364 Parasuram
July 13, 2001

9

 SYS(:,:,k,m) = SS(A(:,:,k,m),...,D(:,:,k,m)), k=1:2, m=1:5.
 All models in the resulting SS array share the same number of
 outputs, inputs, and states.

 SYS = SS(ZEROS([NY NU S1...Sk])) pre-allocates space for an
SS array

 with NY outputs, NU inputs, and array sizes [S1...Sk].

 Conversion:
 SYS = SS(SYS) converts an arbitrary LTI model SYS to state-space,
 i.e., computes a state-space realization of SYS.

 SYS = SS(SYS,'min') computes a minimal realization of SYS.

Given a state-space system, the system matrices can be extracted by using the ‘ssdata’
command in MATLAB. To know more about the command, use the ‘help’ command.

help ssdata

 --- help for ss/ssdata.m ---

 SSDATA Quick access to state-space data.

 [A,B,C,D] = SSDATA(SYS) retrieves the matrix data A,B,C,D
 for the state-space model SYS. If SYS is not a state-space
 model, it is first converted to the state-space representation.

 [A,B,C,D,TS] = SSDATA(SYS) also returns the sample time TS.
 Other properties of SYS can be accessed with GET or by direct
 structure-like referencing (e.g., SYS.Ts).

 For arrays of LTI models with the same order (number of states),
 A,B,C,D are multi-dimensional arrays where A(:,:,k), B(:,:,k),
 C(:,:,k), D(:,:,k) give the state-space matrices of the
 k-th model SYS(:,:,k).

 For arrays of LTI models with variable order, use the syntax
 [A,B,C,D] = SSDATA(SYS,'cell')

 to return the variable-size A,B,C matrices into cell arrays.

The use of the above-mentioned commands is explained with the help of an example.

Example 3

Let the state, input and the output matrices be defined as

[] 0;01;
1
0

;
43
21

==







=








= DCBA

MEEN 364 Parasuram
July 13, 2001

10

The MATLAB code is as given below

A=[1 2; 3 4];
B=[0;1];
C=[1 0];
D=0;
sys=ss(A,B,C,D)

The first four lines of the above code represents the model defined in the example. They
are entered in MATLAB in the form of matrices. The result of the above code is as
shown below

a =
 x1 x2
 x1 1 2
 x2 3 4

b =
 u1
 x1 0
 x2 1

c =
 x1 x2
 y1 1 0

d =
 u1
 y1 0

Continuous-time model.

Suppose that the system ‘sys’ is given, as before, then the state-space matrices must be
extracted, using the following code for further manipulation

[A,B,C,D]=ssdata(sys)

The result of the above code is

A =

 1 2
 3 4

B =

 0
 1

MEEN 364 Parasuram
July 13, 2001

11

C =

 1 0

D =

 0

Note that, the state-space matrices are obtained back, using the ‘ssdata’ command.

2) To convert a transfer function to state-space, use the ‘tf2ss’ command, while to convert
the state-space to transfer function, use the ‘ss2tf’ command in MATLAB. This is further
explained with the help of an example.

Example 4

Let the transfer function of a system be defined as

12
1)(2 ++

=
ss

sF

Find the state-space form of the above transfer function.

The MATLAB code is

numerator = 1;
denominator = [1 2 0];
[A,B,C,D]=tf2ss(numerator, denominator)

The result is

A =

 -2 0
 1 0

B =

 1
 0

C =

 0 1

D =

 0

MEEN 364 Parasuram
July 13, 2001

12

The online help can be used to get more information about the commands. Note that in
the code, the numerator and the denominator of the transfer function is given in the form
of a matrix. The elements of the matrix are the coefficients of the respective polynomials.

Assignment

1) For the state-space equation given below, determine the system transfer function.

[] 







=









+
















=













2

1

2

1

2

.
1

.

01

1
0

43
21

x
x

y

u
x
x

x
x

2) For the system transfer function defined by

)643(
)2()(23 +++

+=
sss

ssY

Determine the state, input and the output matrices using MATLAB and also represent the
matrices in the control canonical form.

Recommended reading

“Feedback Control of Dynamic Systems” 4th Edition, by Gene F. Franklin et.al – pp 41-
45, 494-509.

	Introduction
	Case 1: Formulation of the state-space equation from ODE
	Example 2
	Example 3
	Using MATLAB to perform various state-space operations
	Example 3
	Example 4
	Assignment
	Recommended reading

