
Real-Time Control of Networked Control Systems via Ethernet 591

Real-Time Control of Networked Control Systems via Ethernet

Kun Ji and Won-jong Kim*

Abstract: In this paper, we discuss real-time control of networked control systems (NCSs) and
practical issues in the choice of the communication networks for this purpose. An appropriate
integration of control systems, real-time environments, and network communication systems
allows the optimization of the quality-of-control (QoC) in NCSs. We compare several
prevailing network types that may be used in control applications to offer a guideline of
choosing proper network. A real-time operating environment is also presented as an important
ingredient of NCS design. To evaluate its feasibility and effectiveness, a real-time NCS
containing a ball magnetic levitation (Maglev) setup is implemented via an Ethernet. Based on
the experimental results, it is concluded in this paper that real-time control via Ethernet is a
practical and feasible solution to NCS design.

Keywords: Networked control systems, control networks, real-time system, data-packet loss.

1. INTRODUCTION

Control systems where sensors, controllers, actuators,

and other system components communicate over a
network are referred to as NCSs [1]. The use of a
communication network offers significant advantages
in terms of reliability, enhanced resource utilization,
reduced wiring, easier diagnosis and maintenance, and
reconfigurability. However, implementing closed-loop
control over a communication network introduces
communication delays that inevitably degrade control
performance and could even cause instability.
Depending on network protocols and scheduling
methods, network-induced delays have different
characteristics and can be constant, time varying, or
stochastic. In the design process, the interaction of the
control system with the network must be considered in
order to use the communication resources effectively.

The QoC of NCSs can be improved by using a
modified control design strategy that takes into
account the limited bandwidth of the network. For a
given control law, the difference in performance
between continuous-time and digital control is
determined by the sampling period [2]. As the
sampling period approaches zero, the performance of

the digital system approaches that of a continuous-
time system. For an NCS, performance is a function
of not only the sampling period, but also the traffic
load on the network [3]. An effective way to reduce
the negative effect of delays on the performance of
NCSs is to reduce network traffic. Using deadbands to
reduce communication in NCSs was proposed as a
solution for network traffic reduction in [4]. Yook et
al. [5] formulated a method that offers network traffic
reduction in exchange for added computational cost of
using estimators to predict the states of other systems
on the network. In [6], a traffic-smoothing method
was proposed to reduce the packet-collision ratio. At
each node, a traffic-smoother is installed between the
transport layer and the Ethernet medium access
control (MAC) layer and regulates its packet stream
using a certain traffic-generation rate. Hong [7]
proposed a scheduling method that limits the loop
delay as well as increases the utilization of network
resources. The fundamental idea of this scheduling is
to assign different sampling periods for different
control loops based on the availability of network
bandwidth. The work of extending the concept of the
maximum allowable bound in [7] to the
multidimensional cases was proposed in [8].

Regarding controller design, stability regions and
the stability of NCSs were proposed using a hybrid
systems technique in [9] and [10]. Ray et al. [11]
formulated a state-estimation filter to account for
random delays in the measurements. Ji et al. [12]
extended the stochastic optimal estimator in [13] to be
a multi-step-ahead state estimator to compensate for
the time delay longer than one sampling period and
successive data-packet losses simultaneously. In [14],
a remote fuzzy-logic controller (RFLC) was proposed
to compensate for the network-induced delays for a

 Manuscript received June 22, 2005; revised September 15,
2005; accepted September 20, 2005. Recommended by Editor
Keum-Shik Hong. The authors thank Ajit Ambike and Stephen
Paschall for their contribution in this research project. This
work is based upon work supported by the National Science
Foundation under Grant No. CMS-0116642.
 Kun Ji and Won-jong Kim are with the Department of
Mechanical Engineering, Texas A&M University, College
Station, TX 77843-3123, U.S.A. (e-mails: {kunji, wjkim}
@tamu.edu).
* Corresponding author.

International Journal of Control, Automation, and Systems, vol. 3, no. 4, pp. 591-600, December 2005

592 Kun Ji and Won-jong Kim

single-input-single-output (SISO) plant.
The functionality of an NCS can be described as the

sequence of four main operations (sampling,
computation, data transmission, and actuation) that
have to be repeatedly executed, keeping a strict timing,
in order to deliver the expected performance. Not only
the network could induce delays, but also the devices
connected to the network could introduce latencies if
they are not in a real-time operating environment.
Therefore, to achieve the timing constraints and
guarantee the performance of NCSs, network-traffic
optimization algorithms and real-time control design
for the devices connected to the network must be
developed. Thus the successful design and
implementation of an NCS requires an appropriate
integration of co-design of the real-time control
system and the network communication system. The
design and implementation of closed-loop real-time
control over network is the main focus of this paper.

This paper is organized as follows. The problem
statement is presented in Section 2. In Section 3, the
characteristics of common network protocol types are
elaborated. Real-time control system design is
presented in Section 4. A real-time control system for
ball Maglev control is implemented via an Ethernet in
Section 5.

2. SYSTEM MODEL AND PROBLEM

STATEMENT

2.1. Modeling of NCSs
The general framework of an NCS is shown in Fig.

1. It can be a SISO system or a MIMO system.
Under the consideration of network-induced time-

delay and data-packet-dropout phenomena in the data
transmission, the dynamics of the NCS shown in Fig.
1 can be described by the following model.

[)11,),()(

),()()()(

),()()()(

++ ++∈=

++=

++=

kkkkk τhτhthutu

twtDutCxty

tvtButAxtx

,
 (1)

where nRtx ∈)(is the state, mRtu ∈)(is the control

input, qRty ∈)(is the output, and A, B, C, and D are
known real constant matrices of appropriate
dimensions. The sensor sampling period is h, hk

denotes a certain sampling instant with ,k kh i h=

0, 1, 2, ...k = , where k is the index of the sampling
instants, and { }0, 1, 2, 3, ...ki ∈ is the index of the

arrived packets at the actuator node. It is not required
that 1+< kk ii , which is discussed in Remark 1 below,
thus ik can be different from k. The parameter τk
denotes the time duration from the instant k when
sensor samples data to the instant when the actuator
actuates the control input. We have τk = tsc + tca, i.e.,
the sum of the sensor-to-controller and controller-to-
actuator delays for a fixed control law [9]. The
process noise v(t) and the sensor noise w(t) are zero-
mean white Gaussian noises (WGNs).

Let t0 denote the starting time of control system.
Then we define the following initial condition
function

[)00 ,),()(tτtttθtx −∈= , (2)

where τ is the upper bound of τk and assume τ = Hh.
Remark 1: If{ } { }0 1 2, , , ..., 0, 1, 2, ..., ,ki i i i k=

then there is no data-packet loss in the data
transmission. Otherwise, the missing integers in the
set{ }0, 1, 2, ..., k indicate the lost data-packets. If

1,k ki i +> then there is out-of-order data transmission
between the ik-th data packet and the ik+1-th data
packet.

Two types of controller are considered.
1. Full-state-feedback controller:

[) ,,),()(11 ++ ++∈= kkkkk τhτhthKxtu (3)

2. Estimated-state-feedback controller:

ˆ()x t = []() ()A LC x t B LD L− + −
()

,
()

u t
y t
⎡ ⎤
⎢ ⎥
⎣ ⎦

[)1 1ˆ() (), , ,k k k k ku t Kx h t h τ h τ+ += ∈ + + (4)

where nmRK ×∈ is a constant matrix.
Remark 2: The control input u(t) to the plant is

piecewise constant during a sampling interval
[)1, +kk hh . There can be at most H + 1 control inputs
in one sampling interval.

In the sampling interval],[1+kk hh , the control
inputs arrive at the actuator node at the random
instants ,j

kk th + where .,0 Hjht j
k ≤≤≤ We use

the following equation to discretize the continuous-
time plant dynamic model (1) [2].

∫ −+−=
t

t
dssBustAtxttAtx

0

)())(exp()())(exp()(00 . (5)

Controller Plant

Communication Netwrok

t cat sc
SensorActuator

Fig. 1. NCS framework.

Real-Time Control of Networked Control Systems via Ethernet 593

Substituting (5) to (1) with t = hk+1 and t0 = hk yields

,...,,2,1),()()()(

),()()()()()(
0

1

HliwiDuiCxiy

iviuhBixhAix

kkkk

kik

l

j

j
ikdk k

=+++=

++= −
=

+ ∑
(6)

where

∫

∫
+

+

−

==

==−==

−

−

1
1

1

).()(,)()(

,,0,))(exp()(,)(

)(

1

k

k

k

j
k

j
k

k

h

h kk
shA

k

k
l
k

t

t

j
i

Ah
d

hwiwdssveiv

httdsBshAhBehA

v(ik) and w(ik) are still zero-mean WGNs.

2.2. Control network and real-time control system co-

design
In NCSs, decision and control functions can be

distributed on the network. Thus, a new constraint
must be accommodated in the design of an NCS—the
limited bandwidth of the communication network. To
reduce the time delay caused by device processing,
these control functions should have certain deadlines.
If some of these deadlines are missed, the stability and
performance of the NCS could be negatively affected.
Thus there is a need of real-time operating systems for
the devices to ensure these time-constrained events do
not miss their deadlines.

3. CONTROL NETWORK SELECTION

It is necessary to understand the protocol message

prioritization as well as the delay characteristics of the
control networks when designing NCSs. Generally,
the requirement for the control network is that a
message should be transmitted successfully within a
bounded time delay [15]. Compared with data
networks, control networks have some distinguishing
characteristics:
1) Most of the communication between controllers

and sensors/actuators has a fixed sampling period
and data is transmitted continuously, and thus the
transmission rate is high.

2) Data size of each message is relatively small.
3) Since time delay has a serious effect on system

performance, the real-time requirement of control
networks is much more critical than that of data
networks.

Control networks for NCSs’ purpose are based on the
following protocols: Ethernet (IEEE 802.3), Token
Bus (IEEE 802.4), Token Ring (IEEE 802.5), CAN
(ISO 11898), and Wireless (IEEE 802.11). The
characteristics of the prominent control network types
(Token-based, CAN-based, Ethernet-based, and
Wireless-based) are presented in this section to
explain how they influence the NCS performance. A

more detailed comparison among Ethernet, Token-
based, and CAN protocols can be found in [15].

3.1. Prominent candidate control network types
3.1.1 ControlNet as a token passing network

ControlNet is a deterministic network protocol used
for time/mission critical applications. The message
frame of ControlNet is shown in Fig. 2 [15]. In
ControlNet, all nodes are arranged on a ring. A token
is passed around the ring, and the node that holds the
token is allowed to transmit data. This transmission
continues until it is finished or a time limit is reached,
then the token is regenerated and passed on to the next
node. Thus the maximum waiting time in a node
before sending a message is the token rotation time.
Message collisions never occur since only one node
can transmit message at one time. In general,
ControlNet is very efficient at high network loads and
its deterministic nature defines a maximum bound on
network-induced delays which makes time delay
analysis easier. However at low network loads, a
significant amount of time is spent passing the token
around the logical ring [15]. In the case of an
emergency, a node cannot gain access to transmit
message until the token finishes its rotation around the
logical ring. Under light to moderate network loads,
ControlNet provides good and fair performance
during increased loads. A refined token-based
algorithm assures fair access with deterministic
waiting time delays was proposed in [16].

3.1.2 CAN and DeviceNet

In the CAN protocol, data are transmitted with
message frames shown in Fig. 3 [17], and a message
may be transmitted periodically, sporadically, or on
demand [17]. Each message is given a priority that
determines network access, and collisions do not
destroy messages since the message with higher
priority is delivered. Each message used in the CAN
has a unique identifier defining the type of data and
the identifier also automatically implies the message
priority for bus access [17]. However, the identifier
does not indicate the destination or source address

Preamble Start of
Delimiter

Source
MAC ID LPackets CRC End

Delimiter

Bytes 2 1 1 0--510 2 1

Overhead (4Bytes) OH
(3Bytes)

LPacket LPacket LPacket

Size Control Tag Data

Fig. 2. Message frame of ControlNet [15].

11-Bit Identifier DLC Data (0--8 Bytes) 15 Bits

SOF RTR Delimiter DelimiterSlot

r1 r0

Bus
Idle

Bus
IdleArbitration Field Control Data Field CRC Field ACK EOF Int

Message Frame

Fig. 3. Message frame of CAN [17].

594 Kun Ji and Won-jong Kim

information in a message. If a node wants to transmit
a message, it waits until the bus is free and then
broadcasts the identifier of its message. Each node has
an acceptance filter to decide whether to receive that
message or not. A message is accepted only if an
identifier of the message object is matched with the
incoming message identifier [17]. Thus, a bound on
the time delay for higher priority messages can be
defined and used in analysis. CAN is not suitable for
transmitting messages of large size although large
messages can be transmitted using fragmentation [15].
DeviceNet is based on the CAN-bus protocol but does
not use the same physical-layer interface as ISO
11898. It is developed originally for the automotive
industry, and each message has a unique identifier
defining the type of data such as engine speed,
temperature, pressure or any other data. DeviceNet
has a slow data rate of only 500 kbps with up to 64
devices on the bus [15].

3.1.3 Ethernet-based networks

Ethernet does not support message prioritization,
and it is not a deterministic protocol. Ethernet uses the
carrier-sense multiple access with collision detection
(CSMA/CD) mechanism to resolve the problem of
contention in case of simultaneous data transmission
[15]. If two nodes transmit data packets
simultaneously, the packets collide. If a collision is
detected, the two transmitting nodes wait a random
length of time to retry transmission. The random
length of time is determined by the standard binary-
exponential-backoff (BEB) algorithm. If 16 collisions
are detected, the node stops transmitting, and then
data-packet losses occur [18]. Thus in modeling, both
time delays and packet loss need to be considered.
Since Ethernet uses a simple algorithm for network
operation, delays are small at low network loads [15].
Unlike ControlNet or DeviceNet, communication
bandwidth is not wasted in message arbitration and
message collisions lead to message loss in Ethernet
[15]. The large frame size also makes Ethernet better
suited to transmit large-size data with low frequency.
The message frame of Ethernet is shown in Fig. 4.

Ethernet’s contention-based mechanism makes it
impossible to predict the network-induced delay.
Switched Ethernet can provide deterministic delays by
eliminating message collisions, but its high price has
restricted its implementation in industry [6]. Several
software changes have been suggested so that the
network-induced delay could be bounded. Kweon et

al. [6] developed a traffic-smoothing method to
decrease the packet-collision ratio on the network
which requires minimal changes in the OS kernel. The
traffic smoother regulates the node’s packet stream
using a certain traffic-generation rate to eliminate
collisions effectively. Venkatramani et al. [19]
proposed the approach of a timed-token bus to provide
bandwidth guarantees. They proposed a software-
based protocol called RETHER (Real-time Ethernet).

3.1.4 Wireless networks

Wireless networks have also been investigated as
control networks. The performance analysis of the
wireless-medium-access-control (WMAC) protocol
and the remote frame medium access control
(RFMAC) protocol for a wireless controller area
network (WCAN) was presented in [17]. In [20], the
wireless Ethernet (802.11) standard was modified and
used to prioritize the carrier sense multi-access with
CSMA/CA, and thus message collisions were reduced.
Later work [21] applied the wireless 802.11 control
and scheduling algorithm to the control of a physical
plant. Ploplys et al. [22] developed a distributed-
control system for a Furuta pendulum over a wireless
communication network based on 802.11b.

3.2. NCS via Ethernet

Ethernet is potentially the most practical network
solution because of its low cost, availability, and
higher communication rates, although it is not
designed to transmit short messages with real-time
requirements. In terms of implementation, Ethernet is
not yet ready for manufacturing automation because
its hardware was not designed to withstand stress,
vibrations, or noise [23] and it has unpredictable delay
and packet loss characteristics. However, under low
traffic loads, Ethernet delivers fast data transmissions
with almost no latency [15]. As a result, an Ethernet
network structure may be suitable for control when
the network is relatively uncrowded. An example
using Ethernet in network control is given in [24],
where user datagram protocol (UDP) over a switched
Ethernet was shown to exhibit good performance
characteristics that were sufficient for substation
automation. Based on the NCS framework shown in
Fig. 1, we designed and implemented a real-time
closed-loop control system via an Ethernet and
present experimental results in Section 5.

3.3. UDP and TCP

Selection of network protocol for communication is
an important part of NCS design. The two dominant
choices are TCP and UDP. TCP was specifically
designed to provide a reliable end-to-end byte streams
over any unreliable network [18]. TCP provides
various services like stream data transfer, reliability,
efficient flow control, full duplex operation,

Preamble Start of
Delimiter

Destination
Address

Source
Adrress

Data
Length Data Pad Checksum

Bytes 7 1 6 2 0--1500 0--46 46

Overhead (22 Bytes) 46--1500
Bytes

OH
(4Bytes)

Fig. 4. Message frame of Ethernet [18].

Real-Time Control of Networked Control Systems via Ethernet 595

multiplexing, etc. Handshaking signals are used for
making and breaking the connection. Parameters such
as sequence numbers are initialized to help ensure
ordered delivery and robustness. If time delay is
encountered, the data is retransmitted from the sender.
Timers and acknowledgment messages are used to
detect this time delay or data loss. Check sums are
used to detect data corruptions that might occur
during the data transfer. Although TCP is a very
reliable protocol, it has some disadvantages. Due to
various services such as error checking and ordered
and reliable data delivery, it has large overheads
leading to time delay in the communication. In the
event of congestion, the data are lost more frequently,
so more retransmissions are done by TCP, increasing
the overheads. For closed-loop control over the
network the added reliability provided by TCP may
not be worth the cost of the network delays it
introduces.

UDP is an alternative provided by the TCP/IP
protocol suite. Data transfer with UDP is not
connection oriented. UDP does not provide additional
services such as ensuring ordered data delivery and
robustness as provided by TCP. It is therefore known
as a best-effort network protocol. Although UDP is
less reliable, it has fewer overheads and introduces
less network delays. Ploplys et al. [22] concluded that
the UDP, an unreliable but faster protocol, was better
suited for real-time control over a dedicated wireless
computer network. The general properties of TCP and
UDP are compared in Table 1.

4. REAL-TIME OPERATION
ENVIRONMENT FOR NCS

4.1. Selection of real-time operating environment

After the natures of available networks were studied,
it was concluded in the previous section that an
appropriate real-time OS is required to reduce the time
delay caused by device processing and to successfully
implement a distributed architecture. Commercially
available OSs such as Windows 2000, various
versions of Unix and Linux are not real-time OSs. The
Linux real-time application interface (RTAI) [25] was
developed as a real-time operating environment
solution at Dipartimento di Ingeneria Aerospaziale
Politecnico di Milano (DIAPM). RTAI modifies the

Linux kernel to make it a real-time operating
environment. RTAI offers the same services as the
Linux kernel core, adding the features of a real-time
OS. Compared to the commercially available real-
time OSs, RTAI’s performance is very competitive
[25]. Table 2 summarizes the typical performance of
RTAI. Last but not the least, RTAI is open-source
software and free under the terms of the GNU (GNU
is Not Unix) Lesser General Public License.

Two timing tests were performed to observe the
difference of the performances between RTAI and
non-real-time OSs. The following two paragraphs
present the results of these two tests.

The smallest amount of time that can be precisely
measured on an OS is known as its clock resolution.
The time required to read a clock is typically much
less than its resolution, and many consecutive clock
access functions can be executed before the value
returned by the clock changes. This principle was
used in the first test. The number of times the clock
was accessed before the change in value returned by
the clock access function was recorded and then
plotted. Fig. 5 represents the results of the first test on
Windows 2000, Redhat Linux 7.3, and Redhat Linux
7.3 with RTAI 24.1.12. Significant variations in Fig.
5(a) and (b) indicate some other OS activities that are
not deterministic. In Fig. 5(c), the straight line denotes
that there was no significant non-deterministic OS
activity in Linux with RTAI.

When the value returned by the clock access
function changes, the difference between this new
value returned and the previous value returned, is the
clock resolution. In the second test, the clock
resolution was calculated and plotted over several
iterations. It was found that there were variations in
the values returned as clock resolution. Thus,
maximum value is considered the clock resolution for
the corresponding OS. Fig. 6 presents the results of
the second test on Windows 2000, Redhat Linux 7.3,
and Redhat Linux 7.3 with RTAI 24.1.12, respectively.
Whereas the clock resolution of Redhat Linux 7.3 was
found to be uniform, the resolutions of Windows 2000
and RTAI were not. From Fig. 6, we can see that the
clock resolution of RTAI is much better than that of
Windows and Linux alone. Although the spikes in Fig
6(c) denote the variation in the clock resolution from
1 μs to 4.1 μs, the clock resolution reported is
consistently less than 5 μs. This allowed us to measure
time intervals as small as 5 μs accurately. These two
simple tests demonstrated the non-real-time
characteristics of the two popular OSs: Windows 2000
and Linux.

Table 1. General properties of TCP and UDP.
 TCP UDP

Message Boundaries No Yes
Connection Oriented Yes No
Positive Acknowledgement Yes No
Data Checksum Yes Optional
Timeout and Retransmission Yes No
Duplicate Detection Yes No
Flow Control Yes No

Table 2. RTAI’s performance.
Context switch time 4 μs

Maximum periodic task rate 100 kHz
One-shot task rate 30kHz

596 Kun Ji and Won-jong Kim

0 100 200 300 400
0

5000

10000

15000

20000

Iteration number
 (a)

C
lo
ck
 re
ad
s
pe
r i
te
ra
tio
n

0 100 200 300 400
0

5000

10000

15000

Iteration number
 (b)

C
lo
ck
 re
ad
s
pe
r i
te
ra
tio
n

0 100 200 300 400
0

0.5

1

1.5

2

Iteration number
 (c)

C
lo
ck
 re
ad
s
pe
r i
te
ra
tio
n

Fig. 5. Plots of the number of clock reads per iteration

for the first timing test on (a) Windows 2000,
(b) Redhat Linux 7.3, and (c) Redhat Linux 7.3
with RTAI 24.1.12.

0 100 200 300 400 500
0

5

10

15

Iteration number
 (a)

C
lo
ck
 re
so
lu
tio
n
(us
)

0 100 200 300 400 500
9

9.5

10

10.5

11

Iteration number
 (b)

C
lo
ck
 re
so
lu
tio
n
(us
)

0 100 200 300 400 500
1

2

3

4

5

Iteration number
 (c)

C
lo
ck
 re
so
lu
tio
n
(us
)

Fig. 6. Plots of the clock resolutions obtained for the

second timing test on (a) Windows 2000, (b)
Redhat Linux 7.3., and (c) Redhat Linux 7.3
with RTAI 24.1.12.

4.2. Linux control and measurement device interface
(comedi).

Comedi [26] is a free software project for tools,
libraries, and drivers for various forms of data
acquisition, and provides a collection of drivers for a
variety of common data acquisition plug-in boards. It
is used to provide the hardware-software interface. It
works with the standard Linux kernel as well as the
real-time extensions such as RTLinux and RTAI.

5. CASE STUDY

In this section, we provide a case study of network

configuration on a ball Maglev system. Based on this
test bed, we implement a real-time closed-loop NCS
via an Ethernet.

5.1. Ball maglev test bed

Fig. 7 shows a photograph of the ball Maglev test
bed [27]. The objective of this test bed is to levitate a
steel ball at a predetermined steady-state equilibrium
position with an electromagnet. The control input for
the set up is the output current from the pulse width
modulation (PWM) power amplifier and the system
output is the ball position that is measured by an
optical position sensor.

The mathematical model between the PWM output
(V) and the position sensor output (Y) is described by
a second-order transfer function [27].

20086.0
02792.0

)(
)()(

ssV
sYsG −

== (7)

A state-space model with sampling period of 3 ms is
given as

[]

1
1 0 0.003

() () () (),
0.006 1 0.000009

() 0 1.6233 () ().

k k k k

k k k

x i x i u i v i

y i x i w i

+
⎡ ⎤ ⎡ ⎤

= + +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

= − +

(8)

Using this ball Maglev test bed and the Ethernet
local area network (LAN) in our lab, we constructed a
real-time NCS shown in Fig. 8. The system
configuration is the same as shown in Fig. 1. The

Fig. 7. Ball Maglev system [27].

Real-Time Control of Networked Control Systems via Ethernet 597

plant PC with NI PCI-6025E as the data-acquisition
card enables the ball Maglev test bed to send out
sensor data and receive control data through the LAN.
The controller PC receives the sensor data, computes
the control data, and then sends out the control data
through the same LAN. Linux with RIAI is
implemented on both PCs to ensure the time-
constrained events like sampling and actuating do not
miss their deadlines. The average round trip time
delay between the client PC and the server PC was
measured and found to be about 230 µs and with
standard deviation of about 200 µs. But there are
some sporadic delays as long as 6 ms which is twice
longer than the system sampling period.

A digital lead-led controller designed in [28] to
stabilize the ball maglev set up is given as

.
13.0782.0

769.0754.1
1015.4)(

2

2
4

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−

+−
×=

zz

zz
zD (9)

5.2. Timing of events and predictors for time delays

and packet losses
Clock synchronization is a complicated process
generating additional network traffic to deliver the
synchronized clock signals [29]. A comparatively
simpler approach is developed in this paper to
coordinate the events in an NCS. Our networked-
control architecture is based on a combination of a
time-driven sensor and actuator and an event-driven
controller. Figs. 9 and 10 show two example timing
diagrams of communication processes between the
client PC and the server PC with packet losses and
time delays. The signals labeled y denote the sensor
data transferred from the client to the server, and the
signals labeled u denote the control signal data
transferred from the server PC to the client PC. The
subscripts of these labels denote the sampling-period
index (–7, …, 1) and also indicate whether the data is
a prediction (p) or not. For example, y2 denotes the
sensor data of the second sampling period, u3 denotes
the control signal data for the third sampling period,
and u2p denotes the control signal predicted for the
second sampling period. Eighth-order predictors based
on an auto-regressive (AR) model were designed for
up to 4-step-ahead predictions of the sensor data after

Fig. 9. Example timing diagram of the NCS

communication process with packet losses.
A line with a round tip denotes that a data
packet was lost.

Fig. 10. Example timing diagram of the NCS

communication process with time delays.
Dotted lines denote the delayed data packet
transmission.

numerous design iterations. Then the 4-step-ahead
prediction for the control signal is calculated using the
predicted sensor data using (9).

If the control signal arrives in time, they are used
immediately for actuation. If not, the predicted value
of the control signal that arrived in previous packet
will be used. The effectiveness of this multi-step-
ahead prediction method significantly depends on the
accurate system modeling and the parameter vectors
for predictors vary with different controlled systems.
From Figs. 9 and 10, we can see that the effect of
packet loss is no worse than that of time delay and the
multi-step-ahead prediction algorithm can deal with
packet loss and time delay simultaneously.

5.3. UDP packet composition

The composition of the 68-byte-long Internet
Protocol (IP) sensor data-packet transmitted from the

Ball Maglev
Setup

Sensor
Data

Control
Data

 Ethernet LAN

D/A

A/D

Plant PC
(Linux RTAI)

Controller PC
(Linux RTAI)

`

Other LAN
Users

`
...

Fig. 8. Real-time NCS over Etherent.

Host with
Actuator & Sensor

Server with
Controller & Predictor

Test Bed
(Plant)

T1

T2

T3

T4

y-7 , … y1

y-6 …y2

u1 ,u2p ,u3p ,u4p

y-5 …y3

u3 ,u4p ,u5p ,u6p

u1

u2p

u3p

u4 u4 ,u5p ,u6p ,u7p

y-4 …y4

u4 ,u5p ,u6p ,u7p

Host with
Actuator & Sensor

Server with
Controller & Predictor

Test Bed
(Plant)

T1

T2

T3

T4

y-7 , … y1

y-6 …y2

u1 ,u2p ,u3p ,u4p

y-5 …y3

u3 ,u4p ,u5p ,u6p

u1

u2p

u3p

u4

y-4 …y4

u2 ,u3p ,u4p ,u5p

598 Kun Ji and Won-jong Kim

client to the server is shown in Fig. 11. The
composition of the 56-byte-long IP control data-
packet transmitted from the server to the client is
shown in Fig. 12.

A time stamp is taken on the client side at sampling
and then transmitted in the sensor data-packet to the
server side, the server controller adds it in the control
data-packet transmitted back to the client side. Then
the client side uses this time stamp to identify whether
the arrived control data-packet is the expected packet
or an outdated packet. If a packet is outdated, it is
simply discarded in the current scheme. Thus the out-
of-order data transmission problem is also dealt with
in the implementation of our NCS test bed.

5.4. NCS quality of control

With the implementation of the NCS test bed
shown in Fig. 8, several experiments were performed
to verify the QoC. The first set of experiments was
step response. The system step response is shown in
Fig. 13.

Then we introduced artificial data-packet losses for
the purpose of checking the robust stability and
performance of our NCS test bed. The system step
response with 20% data-packet losses is shown in Fig.
14. The NCS test bed maintained its stability
successfully with degraded performance.

The second set of experiments was to make the ball
track commanded trajectories. Fig. 15 shows the
system response to a sinusoidal position command.

Fig. 16 shows the system response to the same
sinusoidal command with 20% data-packet losses.
Repeating experiments with various command
frequencies, we found that the maximum frequency of
the command that the system can follow was reduced
from 2.8 Hz to 0.35 Hz due to packet losses and
imperfect sensor- and control-data prediction.

6. CONCLUSIONS

The main contribution of this paper is to provide a

guideline to choose a communication network for
NCS design. Network design and real-time OS design
were presented as important ingredients of NCS
design. The characteristics of the most common
network types were discussed to demonstrate how

IP
 Header

UDP
Header

Time
Stamp y0 y-2 y-3 y-4

Bytes 20 8 8 4 4 4 44

Sensor Data

y-1 y-5 y-6 y-7

4 4 4

Fig. 11. The frame of sensor data-packet.

IP
 Header

UDP
Header

Time
Stamp u0 u2p u3p u4p

Bytes 20 8 8 4 4 4 44

Predicted
Control DataCurrent Data

u1p

Fig. 12. The frame of control data-packet.

0 5 10 15 20 25 30
0

1

2

3

4

Time (s)

B
al
l P
os
iti
on
 (m

m
)

Fig. 14. Step response with 20% data-packet losses.

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

Time (s)

B
al
l P
os
iti
on
 (m

m
)

Fig. 15. System response of sinusoidal position
command following.

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

Time (s)

B
al
l
po
si
tio
n
(m
m
)

Fig. 16. System response of sinusoidal position
command following with 20% packet
losses.

0 5 10 15 20 25 30
0

1

2

3

4

Time(s)

B
al
l P
os
iti
on
(m
m
)

Fig. 13. Step response with the control loop closed
over the Ethernet.

Real-Time Control of Networked Control Systems via Ethernet 599

each of them could be used as a communication
medium for NCSs. RTAI with Linux was presented as
a good choice as a real-time OS.

We successfully constructed a real-time NCS via
Ethernet. With this NCS test bed we experimentally
verified the feasibility and effectiveness of our design
methodology. A compensation algorithm for network-
induced time delays and data-packet losses was also
presented and verified. Real-time control via Ethernet
is a practical and feasible solution to NCS design.

REFERENCES

[1] Y. Tipsuwan and M.-Y. Chow, “Control
methodologies in networked control systems,”
Contr. Eng. Practice, vol. 11, no. 10, pp. 1099-
1111, Feb. 2003.

[2] G. F. Franklin, J. D. Powell, and M. L. Workman,
Digital Control of Dynamic Systems, 3rd ed.
Reading, Addison-Wesley, MA, 1998.

[3] F.-L. Lian, J. Moyne, and D. Tilbury, “Network
design consideration for distributed control
systems,” IEEE Trans. Contr. Syst. Technol., vol.
10, no. 2. pp. 297-307, Mar. 2002.

[4] P. G. Otanez, J. R. Moyne, and D. M. Tilbury,
“Using deadbands to reduce communication in
networked control systems,” Proc. of 2002
American Contr. Conf., vol. 4, pp. 3015-3020,
May 2002.

[5] J. K. Yook, D. M. Tilbury, and N. R. Soparkar,
“Trading computation for bandwidth: Reducing
communication in distributed control systems
using state estimators,” IEEE Trans. Contr. Syst.
Technol., vol. 10, no. 4, pp. 503-518, July 2002.

[6] S.-K. Kweon, K. G. Shin, and G. Workman,
“Achieving real-time communication over
Ethernet with adaptive traffic smoothing,” Proc.
IEEE Real-Time Tech. Appl. Symp., pp. 90-100,
June 1999.

[7] S. H. Hong, “Scheduling algorithm of data
sampling times in the integrated communication
and control systems,” IEEE Trans. Contr. Syst.
Technol., vol. 3, no. 2, pp. 225–230, June 1995.

[8] H. S. Park, Y. H. Kim, D. S. Kim, and W. H.
Kwon, “A scheduling method for network based
control systems,” IEEE Trans. Contr. Syst.
Technol., vol. 10, no. 3, pp. 318-330, May 2002.

[9] W. Zhang, M. S. Branicky, and S. M. Phillips,
“Stability of networked control systems,” IEEE
Contr. Syst. Mag., vol. 21, no. 1, pp. 84-99, Feb.
2001.

[10] G. C. Walsh, Y. Hong, and L. G. Bushnell,
“Stability analysis of networked control system,”
IEEE Trans. Contr. Syst. Technol., vol. 10, no. 3,
pp. 438-446, May 2002.

[11] A. Ray, L.-W. Liou, and J. H. Shen, “State
estimation using randomly delayed
measurements,” ASME J. of Dyn. Syst.

Measurement, Contr., vol. 115, no. 1, pp. 19-26,
Mar. 1993.

[12] K. Ji, W.-J. Kim, and A. Ambike, “Control
strategies for distributed real-time control with
time delays and packets losses,” Proc. of ASME
International Mechanical Eng. Congress and
Exposition, Paper no. 61733, Nov. 2004.

[13] J. Nilsson, Real-Time Control System with
Delays, Ph.D. dissertation, Lund Inst. Technol.,
Lund, Sweden, 1998.

[14] K. C. Lee, S. Lee, and M. H. Lee, “Remote
fuzzy logic control of networked control system
via Profibus-DP,” IEEE Trans. Ind. Electron.,
vol. 50, no. 4, pp. 784-792, Aug. 2003.

[15] F.-L. Lian, J. R. Moyne, and D. M. Tilbury,
“Performance evaluation of control networks:
Ethernet, ControlNet and DeviceNet,” IEEE
Contr. Syst. Mag., vol. 21, no. 1, pp. 66-83, Feb.
2001.

[16] B. Englert, L. Rudolph, and A. Shvartsman,
“Developing and refining an adaptive token-
passing strategy,” Proc. of the 21st International
Conference on Distributed Computing Systems,
pp. 597-605, April 2001.

[17] A. Kutlu, H, Ekiz, and E. T. Powner,
“Performance analysis of MAC protocols for
wireless control area network,” Proc. of Second
International Symposium on Parallel
Architectures, Algorithms, and Networks, pp.
494-499, June 1996.

[18] A. S. Tanenbaum, Computer Networks, 3rd ed.
Prentice-Hall, Upper Saddle River, NJ, 2001.

[19] C. Venkatramani and T. Chiueh, “Supporting
real-time traffic on Ethernet,” Proc. of Real-Time
Systems Symposium, pp. 282-286, 1994.

[20] H. Ye, G. Walsh, and L. Bushnell, “Wireless
local area networks in the manufacturing
industry,” Proc. of American Contr. Conf., pp.
2363-2367, June 2000.

[21] H. Ye and G. Walsh, “Real-time mixed-traffic
wireless networks,” IEEE Trans. Ind. Electron.,
vol. 48, no. 5, pp. 883-890, Oct. 2001.

[22] N. J. Ploplys, P. A. Kawka, and A. G. Alleyne,
“Closed-loop control over wireless network,”
IEEE Contr. Syst. Mag., vol. 24, no. 3, pp. 58-71,
June 2004.

[23] J. D. Decotignie, “A perspective on Ethernet -
TCP/IP as a Fieldbus,” Proc. of IFAC
Conference on Fieldbus Systems, pp. 138-142,
Nancy, France, 2001.

[24] T. Skeie, S. Johannessen, and C. Brunner,
“Ethernet in substation automation,” IEEE Contr.
Syst. Mag., vol. 22, no. 3, pp. 43-51, June 2002.

[25] P. Mantegazza, “DIAPM RTAI - real-time
application,” http://www.rtai.org.

[26] D. Schleef, “Linux control and measurement
device interface,” http://www.comedi.org.

600 Kun Ji and Won-jong Kim

[27] S. C. Paschall, II, Design, Fabrication, and
Control of a Single Actuator Magnetic Levitation
System, Senior Honors Thesis, Texas A&M
University, College Station, TX, May 2002.

[28] A. Ambike, Closed-Loop Real-Time Control on
Distributed Networks, Masters’ Thesis, Texas
A&M University, College Station, TX, Aug.
2004.

[29] L. Zhang, Z. Liu, and C. H. Xia, “Clock
synchronization algorithms for network
measurements,” Proc. of IEEE INFOCOM, vol.
1, pp. 1160-1169, 2002.

Kun Ji was born in Yangzhou, Jiangsu,
P.R.China in 1977. He received the
B.S. and M.S. degrees in Mechanical
Engineering from Tsinghua University,
Beijing, China, in 1999 and 2002,
respectively. He is currently a Ph.D.
student at Texas A&M University,
College Station. His research interests
focus on analysis, design of networked

control systems, real-time control systems, and mechatronic
systems. He is a Student Member of IEEE and ASME.

Won-jong Kim received the B.S.
(summa cum laude) and M.S. degrees
in Control and Instrumentation Engineer-
ing from Seoul National University,
Seoul, Korea, in 1989 and 1991,
respectively, and the Ph.D. degree in
Electrical Engineering and computer
science from Massachusetts Institute
of Technology (MIT), Cambridge, in

1997. In September 2000, he joined the Department of
Mechanical Engineering, Texas A&M University (TAMU),
College Station, where he is currently an Assistant
Professor. Following receipt of the Ph.D. degree, he was
with SatCon Technology Corporation, Cambridge, MA, for
three years. His teaching and research interests focus on
analysis, design, and real-time control of mechatronic
systems, networked control systems, and nanoscale
engineering and technology. He holds three US patents on
precision positioning systems. Dr. Kim received the Grand
Prize from the Korean Institute of Electrical Engineers’
Student Paper Contest in 1988. His 1997 MIT dissertation
earned him the Gold Prize from Samsung Electronics’
Humantech Thesis Prize. He was a semifinalist of the
NIST’s Advanced Technology Program 2000 Competition.
The NASA granted him the Space Act Award in July 2002.
He was appointed a Select Young Faculty Fellow by
TAMU College of Engineering and the Texas Engineering
Experiment Station in September 2003. He is the Chair of
the ASME Nanoscale Control Technical Panel and a
member of the IEEE Nanotechnology Council. Prof. Kim is
a Senior Member of IEEE and a Member of ASME, ASPE,
KSEA, Pi Tau Sigma, and Sigma Xi.

