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Abstract: In this paper, we discuss real-time control of networked control systems (NCSs) and 
practical issues in the choice of the communication networks for this purpose. An appropriate 
integration of control systems, real-time environments, and network communication systems 
allows the optimization of the quality-of-control (QoC) in NCSs. We compare several 
prevailing network types that may be used in control applications to offer a guideline of 
choosing proper network. A real-time operating environment is also presented as an important 
ingredient of NCS design. To evaluate its feasibility and effectiveness, a real-time NCS 
containing a ball magnetic levitation (Maglev) setup is implemented via an Ethernet. Based on 
the experimental results, it is concluded in this paper that real-time control via Ethernet is a 
practical and feasible solution to NCS design. 
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1. INTRODUCTION 
 
Control systems where sensors, controllers, actuators, 

and other system components communicate over a 
network are referred to as NCSs [1]. The use of a 
communication network offers significant advantages 
in terms of reliability, enhanced resource utilization, 
reduced wiring, easier diagnosis and maintenance, and 
reconfigurability. However, implementing closed-loop 
control over a communication network introduces 
communication delays that inevitably degrade control 
performance and could even cause instability. 
Depending on network protocols and scheduling 
methods, network-induced delays have different 
characteristics and can be constant, time varying, or 
stochastic. In the design process, the interaction of the 
control system with the network must be considered in 
order to use the communication resources effectively. 

The QoC of NCSs can be improved by using a 
modified control design strategy that takes into 
account the limited bandwidth of the network. For a 
given control law, the difference in performance 
between continuous-time and digital control is 
determined by the sampling period [2]. As the 
sampling period approaches zero, the performance of 

the digital system approaches that of a continuous-
time system. For an NCS, performance is a function 
of not only the sampling period, but also the traffic 
load on the network [3]. An effective way to reduce 
the negative effect of delays on the performance of 
NCSs is to reduce network traffic. Using deadbands to 
reduce communication in NCSs was proposed as a 
solution for network traffic reduction in [4]. Yook et 
al. [5] formulated a method that offers network traffic 
reduction in exchange for added computational cost of 
using estimators to predict the states of other systems 
on the network. In [6], a traffic-smoothing method 
was proposed to reduce the packet-collision ratio. At 
each node, a traffic-smoother is installed between the 
transport layer and the Ethernet medium access 
control (MAC) layer and regulates its packet stream 
using a certain traffic-generation rate. Hong [7] 
proposed a scheduling method that limits the loop 
delay as well as increases the utilization of network 
resources. The fundamental idea of this scheduling is 
to assign different sampling periods for different 
control loops based on the availability of network 
bandwidth. The work of extending the concept of the 
maximum allowable bound in [7] to the 
multidimensional cases was proposed in [8]. 

Regarding controller design, stability regions and 
the stability of NCSs were proposed using a hybrid 
systems technique in [9] and [10]. Ray et al. [11] 
formulated a state-estimation filter to account for 
random delays in the measurements. Ji et al. [12] 
extended the stochastic optimal estimator in [13] to be 
a multi-step-ahead state estimator to compensate for 
the time delay longer than one sampling period and 
successive data-packet losses simultaneously. In [14], 
a remote fuzzy-logic controller (RFLC) was proposed 
to compensate for the network-induced delays for a 
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single-input-single-output (SISO) plant. 
The functionality of an NCS can be described as the 

sequence of four main operations (sampling, 
computation, data transmission, and actuation) that 
have to be repeatedly executed, keeping a strict timing, 
in order to deliver the expected performance. Not only 
the network could induce delays, but also the devices 
connected to the network could introduce latencies if 
they are not in a real-time operating environment. 
Therefore, to achieve the timing constraints and 
guarantee the performance of NCSs, network-traffic 
optimization algorithms and real-time control design 
for the devices connected to the network must be 
developed. Thus the successful design and 
implementation of an NCS requires an appropriate 
integration of co-design of the real-time control 
system and the network communication system. The 
design and implementation of closed-loop real-time 
control over network is the main focus of this paper. 

This paper is organized as follows. The problem 
statement is presented in Section 2. In Section 3, the 
characteristics of common network protocol types are 
elaborated. Real-time control system design is 
presented in Section 4. A real-time control system for 
ball Maglev control is implemented via an Ethernet in 
Section 5. 

 
2. SYSTEM MODEL AND PROBLEM 

STATEMENT 
 

2.1. Modeling of NCSs 
The general framework of an NCS is shown in Fig. 

1. It can be a SISO system or a MIMO system. 
Under the consideration of network-induced time-

delay and data-packet-dropout phenomena in the data 
transmission, the dynamics of the NCS shown in Fig. 
1 can be described by the following model. 
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where nRtx ∈)(  is the state, mRtu ∈)( is the control 

input, qRty ∈)( is the output, and A, B, C, and D are 
known real constant matrices of appropriate 
dimensions. The sensor sampling period is h, hk 

denotes a certain sampling instant with ,k kh i h=  

0, 1, 2, ...k = , where k is the index of the sampling 
instants, and { }0, 1, 2, 3, ...ki ∈  is the index of the 

arrived packets at the actuator node. It is not required 
that 1+< kk ii , which is discussed in Remark 1 below, 
thus ik can be different from k. The parameter τk 
denotes the time duration from the instant k when 
sensor samples data to the instant when the actuator 
actuates the control input. We have τk = tsc + tca, i.e., 
the sum of the sensor-to-controller and controller-to-
actuator delays for a fixed control law [9]. The 
process noise v(t) and the sensor noise w(t) are zero-
mean white Gaussian noises (WGNs). 

Let t0 denote the starting time of control system. 
Then we define the following initial condition 
function 

[ )00 ,),()( tτtttθtx −∈= ,  (2) 

where τ is the upper bound of τk and assume τ = Hh. 
Remark 1: If{ } { }0 1 2, , , ..., 0, 1, 2, ..., ,ki i i i k=  

then there is no data-packet loss in the data 
transmission. Otherwise, the missing integers in the 
set{ }0, 1, 2, ..., k indicate the lost data-packets. If 

1,k ki i +>  then there is out-of-order data transmission 
between the ik-th data packet and the ik+1-th data 
packet.  

Two types of controller are considered. 
1. Full-state-feedback controller: 
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2. Estimated-state-feedback controller: 
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where nmRK ×∈ is a constant matrix. 
Remark 2: The control input u(t) to the plant is 

piecewise constant during a sampling interval 
[ )1, +kk hh . There can be at most H + 1 control inputs 
in one sampling interval.  

In the sampling interval ],[ 1+kk hh , the control 
inputs arrive at the actuator node at the random 
instants ,j

kk th +  where .,0 Hjht j
k ≤≤≤  We use 

the following equation to discretize the continuous-
time plant dynamic model (1) [2]. 
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Fig. 1. NCS framework. 
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Substituting (5) to (1) with t = hk+1 and t0 = hk yields 
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v(ik) and w(ik) are still zero-mean WGNs. 

 
2.2. Control network and real-time control system co-

design 
In NCSs, decision and control functions can be 

distributed on the network. Thus, a new constraint 
must be accommodated in the design of an NCS—the 
limited bandwidth of the communication network. To 
reduce the time delay caused by device processing, 
these control functions should have certain deadlines. 
If some of these deadlines are missed, the stability and 
performance of the NCS could be negatively affected. 
Thus there is a need of real-time operating systems for 
the devices to ensure these time-constrained events do 
not miss their deadlines. 

 
3. CONTROL NETWORK SELECTION 

 
It is necessary to understand the protocol message 

prioritization as well as the delay characteristics of the 
control networks when designing NCSs. Generally, 
the requirement for the control network is that a 
message should be transmitted successfully within a 
bounded time delay [15]. Compared with data 
networks, control networks have some distinguishing 
characteristics: 
1) Most of the communication between controllers 

and sensors/actuators has a fixed sampling period 
and data is transmitted continuously, and thus the 
transmission rate is high. 

2) Data size of each message is relatively small. 
3) Since time delay has a serious effect on system 

performance, the real-time requirement of control 
networks is much more critical than that of data 
networks. 

Control networks for NCSs’ purpose are based on the 
following protocols: Ethernet (IEEE 802.3), Token 
Bus (IEEE 802.4), Token Ring (IEEE 802.5), CAN 
(ISO 11898), and Wireless (IEEE 802.11). The 
characteristics of the prominent control network types 
(Token-based, CAN-based, Ethernet-based, and 
Wireless-based) are presented in this section to 
explain how they influence the NCS performance. A 

more detailed comparison among Ethernet, Token-
based, and CAN protocols can be found in [15]. 

 
3.1. Prominent candidate control network types 
3.1.1 ControlNet as a token passing network 

ControlNet is a deterministic network protocol used 
for time/mission critical applications. The message 
frame of ControlNet is shown in Fig. 2 [15]. In 
ControlNet, all nodes are arranged on a ring. A token 
is passed around the ring, and the node that holds the 
token is allowed to transmit data. This transmission 
continues until it is finished or a time limit is reached, 
then the token is regenerated and passed on to the next 
node. Thus the maximum waiting time in a node 
before sending a message is the token rotation time. 
Message collisions never occur since only one node 
can transmit message at one time. In general, 
ControlNet is very efficient at high network loads and 
its deterministic nature defines a maximum bound on 
network-induced delays which makes time delay 
analysis easier. However at low network loads, a 
significant amount of time is spent passing the token 
around the logical ring [15]. In the case of an 
emergency, a node cannot gain access to transmit 
message until the token finishes its rotation around the 
logical ring. Under light to moderate network loads, 
ControlNet provides good and fair performance 
during increased loads. A refined token-based 
algorithm assures fair access with deterministic 
waiting time delays was proposed in [16]. 

 
3.1.2 CAN and DeviceNet 

In the CAN protocol, data are transmitted with 
message frames shown in Fig. 3 [17], and a message 
may be transmitted periodically, sporadically, or on 
demand [17]. Each message is given a priority that 
determines network access, and collisions do not 
destroy messages since the message with higher 
priority is delivered. Each message used in the CAN 
has a unique identifier defining the type of data and 
the identifier also automatically implies the message 
priority for bus access [17]. However, the identifier 
does not indicate the destination or source address 

Preamble Start of
Delimiter

Source
MAC ID LPackets CRC End

Delimiter

Bytes 2 1 1 0--510 2 1

Overhead (4Bytes) OH
(3Bytes)

LPacket LPacket ...... LPacket

Size Control Tag Data

 

Fig. 2. Message frame of ControlNet [15]. 

 

11-Bit Identifier DLC Data (0--8 Bytes) 15 Bits

SOF RTR Delimiter DelimiterSlot

r1 r0

Bus
Idle

Bus
IdleArbitration Field Control Data Field CRC Field ACK EOF Int

Message Frame

 

Fig. 3. Message frame of CAN [17]. 
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information in a message. If a node wants to transmit 
a message, it waits until the bus is free and then 
broadcasts the identifier of its message. Each node has 
an acceptance filter to decide whether to receive that 
message or not. A message is accepted only if an 
identifier of the message object is matched with the 
incoming message identifier [17]. Thus, a bound on 
the time delay for higher priority messages can be 
defined and used in analysis. CAN is not suitable for 
transmitting messages of large size although large 
messages can be transmitted using fragmentation [15]. 
DeviceNet is based on the CAN-bus protocol but does 
not use the same physical-layer interface as ISO 
11898. It is developed originally for the automotive 
industry, and each message has a unique identifier 
defining the type of data such as engine speed, 
temperature, pressure or any other data. DeviceNet 
has a slow data rate of only 500 kbps with up to 64 
devices on the bus [15]. 

 
3.1.3 Ethernet-based networks 

Ethernet does not support message prioritization, 
and it is not a deterministic protocol. Ethernet uses the 
carrier-sense multiple access with collision detection 
(CSMA/CD) mechanism to resolve the problem of 
contention in case of simultaneous data transmission 
[15]. If two nodes transmit data packets 
simultaneously, the packets collide. If a collision is 
detected, the two transmitting nodes wait a random 
length of time to retry transmission. The random 
length of time is determined by the standard binary-
exponential-backoff (BEB) algorithm. If 16 collisions 
are detected, the node stops transmitting, and then 
data-packet losses occur [18]. Thus in modeling, both 
time delays and packet loss need to be considered. 
Since Ethernet uses a simple algorithm for network 
operation, delays are small at low network loads [15]. 
Unlike ControlNet or DeviceNet, communication 
bandwidth is not wasted in message arbitration and 
message collisions lead to message loss in Ethernet 
[15]. The large frame size also makes Ethernet better 
suited to transmit large-size data with low frequency. 
The message frame of Ethernet is shown in Fig. 4. 

Ethernet’s contention-based mechanism makes it 
impossible to predict the network-induced delay. 
Switched Ethernet can provide deterministic delays by 
eliminating message collisions, but its high price has 
restricted its implementation in industry [6]. Several 
software changes have been suggested so that the 
network-induced delay could be bounded. Kweon et 

al. [6] developed a traffic-smoothing method to 
decrease the packet-collision ratio on the network 
which requires minimal changes in the OS kernel. The 
traffic smoother regulates the node’s packet stream 
using a certain traffic-generation rate to eliminate 
collisions effectively. Venkatramani et al. [19] 
proposed the approach of a timed-token bus to provide 
bandwidth guarantees. They proposed a software-
based protocol called RETHER (Real-time Ethernet). 
 
3.1.4 Wireless networks 

Wireless networks have also been investigated as 
control networks. The performance analysis of the 
wireless-medium-access-control (WMAC) protocol 
and the remote frame medium access control 
(RFMAC) protocol for a wireless controller area 
network (WCAN) was presented in [17]. In [20], the 
wireless Ethernet (802.11) standard was modified and 
used to prioritize the carrier sense multi-access with 
CSMA/CA, and thus message collisions were reduced. 
Later work [21] applied the wireless 802.11 control 
and scheduling algorithm to the control of a physical 
plant. Ploplys et al. [22] developed a distributed-
control system for a Furuta pendulum over a wireless 
communication network based on 802.11b.  

 
3.2. NCS via Ethernet 

Ethernet is potentially the most practical network 
solution because of its low cost, availability, and 
higher communication rates, although it is not 
designed to transmit short messages with real-time 
requirements. In terms of implementation, Ethernet is 
not yet ready for manufacturing automation because 
its hardware was not designed to withstand stress, 
vibrations, or noise [23] and it has unpredictable delay 
and packet loss characteristics. However, under low 
traffic loads, Ethernet delivers fast data transmissions 
with almost no latency [15]. As a result, an Ethernet 
network structure may be suitable for control when 
the network is relatively uncrowded. An example 
using Ethernet in network control is given in [24], 
where user datagram protocol (UDP) over a switched 
Ethernet was shown to exhibit good performance 
characteristics that were sufficient for substation 
automation. Based on the NCS framework shown in 
Fig. 1, we designed and implemented a real-time 
closed-loop control system via an Ethernet and 
present experimental results in Section 5. 

 
3.3. UDP and TCP 

Selection of network protocol for communication is 
an important part of NCS design. The two dominant 
choices are TCP and UDP. TCP was specifically 
designed to provide a reliable end-to-end byte streams 
over any unreliable network [18]. TCP provides 
various services like stream data transfer, reliability, 
efficient flow control, full duplex operation, 

 

Preamble Start of
Delimiter

Destination
Address

Source
Adrress

Data
Length Data Pad Checksum

Bytes 7 1 6 2 0--1500 0--46 46

Overhead (22 Bytes) 46--1500
Bytes

OH
(4Bytes)

 

Fig. 4. Message frame of Ethernet [18]. 
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multiplexing, etc. Handshaking signals are used for 
making and breaking the connection. Parameters such 
as sequence numbers are initialized to help ensure 
ordered delivery and robustness. If time delay is 
encountered, the data is retransmitted from the sender. 
Timers and acknowledgment messages are used to 
detect this time delay or data loss. Check sums are 
used to detect data corruptions that might occur 
during the data transfer. Although TCP is a very 
reliable protocol, it has some disadvantages. Due to 
various services such as error checking and ordered 
and reliable data delivery, it has large overheads 
leading to time delay in the communication. In the 
event of congestion, the data are lost more frequently, 
so more retransmissions are done by TCP, increasing 
the overheads. For closed-loop control over the 
network the added reliability provided by TCP may 
not be worth the cost of the network delays it 
introduces. 

UDP is an alternative provided by the TCP/IP 
protocol suite. Data transfer with UDP is not 
connection oriented. UDP does not provide additional 
services such as ensuring ordered data delivery and 
robustness as provided by TCP. It is therefore known 
as a best-effort network protocol. Although UDP is 
less reliable, it has fewer overheads and introduces 
less network delays. Ploplys et al. [22] concluded that 
the UDP, an unreliable but faster protocol, was better 
suited for real-time control over a dedicated wireless 
computer network. The general properties of TCP and 
UDP are compared in Table 1. 

 
4. REAL-TIME OPERATION 
ENVIRONMENT FOR NCS 

 
4.1. Selection of real-time operating environment 

After the natures of available networks were studied, 
it was concluded in the previous section that an 
appropriate real-time OS is required to reduce the time 
delay caused by device processing and to successfully 
implement a distributed architecture. Commercially 
available OSs such as Windows 2000, various 
versions of Unix and Linux are not real-time OSs. The 
Linux real-time application interface (RTAI) [25] was 
developed as a real-time operating environment 
solution at Dipartimento di Ingeneria Aerospaziale 
Politecnico di Milano (DIAPM). RTAI modifies the 

Linux kernel to make it a real-time operating 
environment. RTAI offers the same services as the 
Linux kernel core, adding the features of a real-time 
OS. Compared to the commercially available real-
time OSs, RTAI’s performance is very competitive 
[25]. Table 2 summarizes the typical performance of 
RTAI. Last but not the least, RTAI is open-source 
software and free under the terms of the GNU (GNU 
is Not Unix) Lesser General Public License.  

Two timing tests were performed to observe the 
difference of the performances between RTAI and 
non-real-time OSs. The following two paragraphs 
present the results of these two tests. 

The smallest amount of time that can be precisely 
measured on an OS is known as its clock resolution. 
The time required to read a clock is typically much 
less than its resolution, and many consecutive clock 
access functions can be executed before the value 
returned by the clock changes. This principle was 
used in the first test. The number of times the clock 
was accessed before the change in value returned by 
the clock access function was recorded and then 
plotted. Fig. 5 represents the results of the first test on 
Windows 2000, Redhat Linux 7.3, and Redhat Linux 
7.3 with RTAI 24.1.12. Significant variations in Fig. 
5(a) and (b) indicate some other OS activities that are 
not deterministic. In Fig. 5(c), the straight line denotes 
that there was no significant non-deterministic OS 
activity in Linux with RTAI. 

When the value returned by the clock access 
function changes, the difference between this new 
value returned and the previous value returned, is the 
clock resolution. In the second test, the clock 
resolution was calculated and plotted over several 
iterations. It was found that there were variations in 
the values returned as clock resolution. Thus, 
maximum value is considered the clock resolution for 
the corresponding OS. Fig. 6 presents the results of 
the second test on Windows 2000, Redhat Linux 7.3, 
and Redhat Linux 7.3 with RTAI 24.1.12, respectively. 
Whereas the clock resolution of Redhat Linux 7.3 was 
found to be uniform, the resolutions of Windows 2000 
and RTAI were not. From Fig. 6, we can see that the 
clock resolution of RTAI is much better than that of 
Windows and Linux alone. Although the spikes in Fig 
6(c) denote the variation in the clock resolution from 
1 μs to 4.1 μs, the clock resolution reported is 
consistently less than 5 μs. This allowed us to measure 
time intervals as small as 5 μs accurately. These two 
simple tests demonstrated the non-real-time 
characteristics of the two popular OSs: Windows 2000 
and Linux. 

Table 1. General properties of TCP and UDP. 
 TCP UDP 

Message Boundaries No Yes 
Connection Oriented Yes No 
Positive Acknowledgement Yes No 
Data Checksum Yes Optional
Timeout and Retransmission Yes No 
Duplicate Detection Yes No 
Flow Control Yes No 

 

Table 2. RTAI’s performance. 
Context switch time 4 μs 

Maximum periodic task rate 100 kHz 
One-shot task rate 30kHz 
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Fig. 5. Plots of the number of clock reads per iteration 

for the first timing test on (a) Windows 2000, 
(b) Redhat Linux 7.3, and (c) Redhat Linux 7.3 
with RTAI 24.1.12. 
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Fig. 6. Plots of the clock resolutions obtained for the 

second timing test on (a) Windows 2000, (b) 
Redhat Linux 7.3., and (c) Redhat Linux 7.3 
with RTAI 24.1.12. 

4.2. Linux control and measurement device interface 
(comedi). 

Comedi [26] is a free software project for tools, 
libraries, and drivers for various forms of data 
acquisition, and provides a collection of drivers for a 
variety of common data acquisition plug-in boards. It 
is used to provide the hardware-software interface. It 
works with the standard Linux kernel as well as the 
real-time extensions such as RTLinux and RTAI. 

 
5. CASE STUDY 

 
In this section, we provide a case study of network 

configuration on a ball Maglev system. Based on this 
test bed, we implement a real-time closed-loop NCS 
via an Ethernet. 

 
5.1. Ball maglev test bed  

Fig. 7 shows a photograph of the ball Maglev test 
bed [27]. The objective of this test bed is to levitate a 
steel ball at a predetermined steady-state equilibrium 
position with an electromagnet. The control input for 
the set up is the output current from the pulse width 
modulation (PWM) power amplifier and the system 
output is the ball position that is measured by an 
optical position sensor. 

The mathematical model between the PWM output 
(V) and the position sensor output (Y) is described by 
a second-order transfer function [27]. 
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A state-space model with sampling period of 3 ms is 
given as 

[ ]

1
1 0 0.003

( ) ( ) ( ) ( ),
0.006 1 0.000009

( ) 0 1.6233 ( ) ( ).

k k k k

k k k

x i x i u i v i

y i x i w i

+
⎡ ⎤ ⎡ ⎤

= + +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

= − +

(8) 

Using this ball Maglev test bed and the Ethernet 
local area network (LAN) in our lab, we constructed a 
real-time NCS shown in Fig. 8. The system 
configuration is the same as shown in Fig. 1. The 
 

 

Fig. 7. Ball Maglev system [27]. 
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plant PC with NI PCI-6025E as the data-acquisition 
card enables the ball Maglev test bed to send out 
sensor data and receive control data through the LAN. 
The controller PC receives the sensor data, computes 
the control data, and then sends out the control data 
through the same LAN. Linux with RIAI is 
implemented on both PCs to ensure the time-
constrained events like sampling and actuating do not 
miss their deadlines. The average round trip time 
delay between the client PC and the server PC was 
measured and found to be about 230 µs and with 
standard deviation of about 200 µs. But there are 
some sporadic delays as long as 6 ms which is twice 
longer than the system sampling period. 

A digital lead-led controller designed in [28] to 
stabilize the ball maglev set up is given as 

.
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5.2. Timing of events and predictors for time delays 

and packet losses 
Clock synchronization is a complicated process 
generating additional network traffic to deliver the 
synchronized clock signals [29]. A comparatively 
simpler approach is developed in this paper to 
coordinate the events in an NCS. Our networked-
control architecture is based on a combination of a 
time-driven sensor and actuator and an event-driven 
controller. Figs. 9 and 10 show two example timing 
diagrams of communication processes between the 
client PC and the server PC with packet losses and 
time delays. The signals labeled y denote the sensor 
data transferred from the client to the server, and the 
signals labeled u denote the control signal data 
transferred from the server PC to the client PC. The 
subscripts of these labels denote the sampling-period 
index (–7, …, 1) and also indicate whether the data is 
a prediction (p) or not. For example, y2 denotes the 
sensor data of the second sampling period, u3 denotes 
the control signal data for the third sampling period, 
and u2p denotes the control signal predicted for the 
second sampling period. Eighth-order predictors based 
on an auto-regressive (AR) model were designed for 
up to 4-step-ahead predictions of the sensor data after 

 
Fig. 9. Example timing diagram of the NCS 

communication process with packet losses. 
A line with a round tip denotes that a data 
packet was lost. 

 

 
Fig. 10. Example timing diagram of the NCS 

communication process with time delays. 
Dotted lines denote the delayed data packet 
transmission.  

 
numerous design iterations. Then the 4-step-ahead 
prediction for the control signal is calculated using the 
predicted sensor data using (9).  

If the control signal arrives in time, they are used 
immediately for actuation. If not, the predicted value 
of the control signal that arrived in previous packet 
will be used. The effectiveness of this multi-step- 
ahead prediction method significantly depends on the 
accurate system modeling and the parameter vectors 
for predictors vary with different controlled systems. 
From Figs. 9 and 10, we can see that the effect of 
packet loss is no worse than that of time delay and the 
multi-step-ahead prediction algorithm can deal with 
packet loss and time delay simultaneously. 

 
5.3. UDP packet composition 

The composition of the 68-byte-long Internet 
Protocol (IP) sensor data-packet transmitted from the 
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Fig. 8. Real-time NCS over Etherent. 
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client to the server is shown in Fig. 11. The 
composition of the 56-byte-long IP control data-
packet transmitted from the server to the client is 
shown in Fig. 12. 

A time stamp is taken on the client side at sampling 
and then transmitted in the sensor data-packet to the 
server side, the server controller adds it in the control 
data-packet transmitted back to the client side. Then 
the client side uses this time stamp to identify whether 
the arrived control data-packet is the expected packet 
or an outdated packet. If a packet is outdated, it is 
simply discarded in the current scheme. Thus the out-
of-order data transmission problem is also dealt with 
in the implementation of our NCS test bed. 

 
5.4. NCS quality of control 

With the implementation of the NCS test bed 
shown in Fig. 8, several experiments were performed 
to verify the QoC. The first set of experiments was 
step response. The system step response is shown in 
Fig. 13.  

Then we introduced artificial data-packet losses for 
the purpose of checking the robust stability and 
performance of our NCS test bed. The system step 
response with 20% data-packet losses is shown in Fig. 
14. The NCS test bed maintained its stability 
successfully with degraded performance.  

The second set of experiments was to make the ball 
track commanded trajectories. Fig. 15 shows the 
system response to a sinusoidal position command. 

Fig. 16 shows the system response to the same 
sinusoidal command with 20% data-packet losses. 
Repeating experiments with various command 
frequencies, we found that the maximum frequency of 
the command that the system can follow was reduced 
from 2.8 Hz to 0.35 Hz due to packet losses and 
imperfect sensor- and control-data prediction. 

 
6. CONCLUSIONS 

 
The main contribution of this paper is to provide a 

guideline to choose a communication network for 
NCS design. Network design and real-time OS design 
were presented as important ingredients of NCS 
design. The characteristics of the most common 
network types were discussed to demonstrate how 
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Fig. 11. The frame of sensor data-packet. 
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Fig. 12. The frame of control data-packet. 
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Fig. 14. Step response with 20% data-packet losses. 
 

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

Time (s)

B
al
l P
os
iti
on
 (m

m
)

 

Fig. 15. System response of sinusoidal position
command following. 
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Fig. 16. System response of sinusoidal position
command following with 20% packet
losses. 
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Fig. 13. Step response with the control loop closed
over the Ethernet. 
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each of them could be used as a communication 
medium for NCSs. RTAI with Linux was presented as 
a good choice as a real-time OS.  

We successfully constructed a real-time NCS via 
Ethernet. With this NCS test bed we experimentally 
verified the feasibility and effectiveness of our design 
methodology. A compensation algorithm for network-
induced time delays and data-packet losses was also 
presented and verified. Real-time control via Ethernet 
is a practical and feasible solution to NCS design. 
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