
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 3, NO. 3, JULY 2006 287

Real-Time Operating Environment
for Networked Control Systems

Won-jong Kim, Senior Member, IEEE, Kun Ji, Student Member, IEEE, and Ajit Ambike

Abstract—This paper presents the development of a novel real-
time operating environment for networked control systems (NCSs).
An open-loop unstable magnetic-levitation (maglev) test bed was
constructed and used to develop an NCS with real-time applica-
tion interface (RTAI). A client–server architecture on a local-area
network was developed with the network communication based
on the user datagram protocol. The control loop of our NCS is
closed over the network. This NCS structure gives the best flexi-
bility and has significant economical merits. The implementation
of an event-driven server and a time-driven client presented in
this paper facilitates a simple timing scheme that does not require
clock synchronization between the client and the server. A novel
prediction scheme with a multiple-step-ahead control-signal gen-
erator is used to maintain system stability in the presence of ex-
cessive time delays and data-packet losses in the communication
network. The performance of this NCS, based on the predictor al-
gorithm, is demonstrated experimentally. The current system can
compensate for up to 20% data-packet losses without losing sta-
bility with the maglev real-time-control test bed in the communica-
tion network. Our real-time operating environment also improved
the command-following capability by a factor of 4 in terms of com-
mand frequency.

Note to Practitioners—With the advancement in the automa-
tion industry, the need to perform complex remote operations
has grown. Ever-increasing computational capabilities and ad-
vancements in the networking technology have aided researchers
to develop architectures to implement control from a distance.
In large-scale control applications of the modern industry, the
functional agents, such as sensors, actuators, and controllers are
geographically distributed. For smooth working of a control ap-
plication, all of the agents have to exchange information through
communication media. The results of this paper can help to design
practical real-time networked control systems in modern industry.

Index Terms—Networked control system (NCS), packet loss,
real-time operating environment, time delay.

I. INTRODUCTION

WITH the advancement in the automation industry, the
need to perform complex remote operations has grown.

Ever-increasing computational capabilities and bandwidths in
the networking technology enabled researchers to develop net-
worked control systems (NCSs) to implement distributed con-
trol schemes from a distance. Unlike traditional control systems,

Manuscript received December 31, 2004; revised March 29, 2005. This work
was recommended for publication by Associate Editor A. Monti and Editor M.
Wang upon evaluation of the reviewers’ comments. This work was supported
by the National Science Foundation under Grant CMS-0116642.

W.-J. Kim and K. Ji are with the Department of Mechanical Engineering,
Texas A&M University, College Station, TX 77843-3123 USA (e-mail:
wjkim@tamu.edu).

A. Ambike is with NuView, Inc., Houston, TX 77079 USA.
Digital Object Identifier 10.1109/TASE.2005.862146

an NCS essentially comprises multiple nodes communicating
with each other over communication networks. A real-time op-
erating environment is needed in the implementation of an NCS
to handle the timings of various events in the communications
among these nodes. The success of an NCS relies on the ef-
fective integration of computing resources, communication net-
work, and control algorithms in the various levels of its imple-
mentation. Several factors, such as time resolution and capa-
bility of multi-threading and periodic tasks, affect the selection
of an appropriate real-time computing environment.

A substantial amount of work has been done in the area of
NCSs. NCSs can be roughly classified into three modes: 1)
teleoperation; 2) supervisory control; and 3) feedback control
over network. Teleoperation was the first form of an NCS
that became popular. Internet-based teleoperation was used in
telerobotics, remote manufacturing, telesurgery, and distant
education. Hu et al. discussed the use of cooperative Internet
robots with an interactive human–machine interface [1]. Mit-
suishi et al. developed a master–slave-type telemicrosurgical
system with an intelligent user interface [2].

With supervisory control, a user can give symbolic or ana-
logic instructions remotely to a computer attached to the ma-
nipulator instead of remotely guiding the telemanipulator. Luo
et al. used a supervisory control technique to develop a desktop
rapid-prototyping system [3]. Garcia et al. developed a teler-
obotic system using supervisory control based on a hybrid con-
trol approach [4]. Srivastava and Kim discussed the supervisory
control via the Internet of a ball magnetic-levitation (maglev)
system [5]. The setup was based on client/server architecture
with an interface programmed with hypertext markup language
(HTML) and common gateway interface (CGI).

In teleoperation and supervisory control, the access to the
control system is provided to the user in the form of an inter-
face. The controller is implemented on the controlled-environ-
ment side of the network (i.e., the control loop is closed locally).

On the other hand, in the feedback control over network, the
user side of the network runs the control algorithm. All compo-
nents, including sensors, actuators, and controllers, are assumed
to be interconnected via a communication network. The control
loop of the system is closed over the network using protocols
to multiplex data from the sensor to the controller and from the
controller to the actuator. A client-server-based architecture of
feedback control over distributed networks is depicted in Fig. 1.
The feedback control loop shares the communication medium
with other data-transfer processes. The main advantage of this
configuration is flexibility. It allows placing the controller on
the network, separated from the controlled processes, without

1545-5955/$20.00 © 2006 IEEE

288 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 3, NO. 3, JULY 2006

Fig. 1. Block diagram of feedback control over network. The independent
network delays from the controller to the actuator and from the sensor to the
controller are denoted as � and � , respectively.

Fig. 2. Distributed control system with multiple clients.

requiring closing the control loops locally with individual com-
puting units. Thus, it has significant economic merit. One ap-
plication of this NCS mode is a distributed control system as
shown in Fig. 2.

The automation industry will soon reap the benefits of high-
performance closed-loop control on distributed networks along
with the development of reliable high-bandwidth networks and
new protocols, such as Internet II and Rether (real-time Eth-
ernet) [6], [7]. Although this field is relatively new and still in
its infancy, it has captured significant interest from many re-
searchers worldwide. Bluetooth technology was used to develop
wireless control of a rotating inverted pendulum by Eker and
Cervin [8]. Ploplys et al. concluded that the UDP, an unreliable
but faster protocol, was better suited for real-time control over
a dedicated wireless computer network [9].

In the development of NCSs, dealing with network delays
and data-packet losses in the communication networks has al-
ways been a key issue. Ferrell was among the first to work on
the problem of time delays in teleoperation [10]. Later, An-
derson and Spong studied the bilateral control of the teleop-
erated system with time delays [11]. That research focused on
maintaining the stability in force-reflecting bilateral teleopera-
tors in the presence of substantial time delays. Using the pas-
sivity and scattering theory, a criterion was developed to show
the usefulness of the bilateral control law. Conway et al. intro-
duced new concepts called time and position clutches to deal
with the time delays due to telemetry and signal propagation in
teleoperations [12].

The development of a real-time operating environment en-
abling closed-loop real-time control over distributed network

is the main focus of this paper. Various key issues regarding
the realization of such systems are identified and addressed.
An NCS with closed-loop control of a maglev test bed is im-
plemented on an LAN in our real-time operating environment.
This NCS also incorporates a novel predictor-based algorithm
to stabilize the system in the event of consecutive network de-
lays and data-packet losses. The software architecture is based
on the UDP. In the past, dedicated networks were used to study
closed-loop real-time control over the distributed network [8],
[9]. To accommodate the effect of the cross traffic of packets on
the communication-delay profiles, an Ethernet was used for the
NCS in the current research. Thus, in our NCS framework pre-
sented in this paper, the network is not necessarily dedicated to
the NCS. A novel multistep-ahead-predictor algorithm has been
developed to stabilize the NCS in the event of network delays
and data-packet losses.

The need for real-time operating environments is elaborated
in Section II. A brief discussion on various factors affecting the
selection of real-time operating environments is given in Sec-
tion III followed by a review of RTLinux, RTAI, and Linux Con-
trol and Measurement Device Interface (Comedi). The develop-
ment of the software architecture and the implementation of the
predictor-based algorithm are presented in Section IV. In this
section, a brief overview of the maglev test bed and the exten-
sion of our real-time environment for multiclient cases are also
given. The experimental verification of the functionality of the
NCS and its real-time operational environment is provided in
Section V.

II. NEED FOR REAL-TIME OPERATING ENVIRONMENTS

The Ethernet is widely used in the information-technology
(IT) industry. Various communication protocols, such as trans-
mission control protocol/internet protocol (TCP/IP) are used.
However, the use of an LAN in NCSs poses several technical
challenges including dealing with network latencies. To under-
stand the latency issues, let us consider a client-server commu-
nication on an Ethernet as shown in Fig. 3. The client requests
some information from the server, and the server responds to
that request. The maximum delay in this communication (i.e.,
the latency) is a significant real-time constraint on the communi-
cation system. Table I gives the nomenclature of the time-delay
components shown in Fig. 3. We assume that there is no data
collision on the network.

As shown in Fig. 3, a typical client–server communication
process in an NCS is periodic with a sampling period . The
entire communication process is required to be completed in
one period. The total communication time or the latency
is given by

(1)

For an NCS with the architecture shown in Fig. 1, the client
side hosts the test bed. The server side implements the con-
troller. The request message sent by the client to the server can
carry the sensor data, and the response message sent by the
server to the client can carry the control data. The creation of the
message to be sent to the server is a time-driven process. Taking

KIM et al.: REAL-TIME OPERATING ENVIRONMENT FOR NETWORKED CONTROL SYSTEMS 289

Fig. 3. Time-delay components of the network latency in a periodic
client–server communication process.

TABLE I
NOMENCLATURE OF TIME-DELAY COMPONENTS

our maglev setup for an example, it is the responsibility of the
operating system (OS) to ensure that a sensor-data sample is
taken every 3 ms for the 333.333-Hz sampling frequency. On the
other side of the communication network, the server waits for
the request message from the client. As soon as it receives a mes-
sage from the client, it processes the request and creates a reply,
the control data in the current research. The moment of the cre-
ation of this reply to be sent to the client is dependent on the ar-
rival of the request. In other words, it is an event-driven process.
After the server sends back the reply message to the client, the
client receives it and generates the control signal. In the begin-
ning of the next sampling period, another sensor-data sample is
taken, and a similar communication process takes place and is
repeated.

In practice, all of these events have certain deadlines. If some
of these deadlines were missed, the stability of the NCS might be
negatively affected. In the current research, the maglev test bed
to be described in Section IV is open-loop unstable. For our test

bed, Srivastava and Kim [5] demonstrated that all of the calcu-
lations in the feedback control loop should be completed within
1.4 ms. If this deadline is missed due to the network latency, the
system becomes unstable. Moreover, in order to ensure that the
time-sensitive events occur at precise times, a real-time oper-
ating environment is needed. A real-time system can be defined
as a system that responds to externally generated stimuli within
a finite and specified period of time [13].

III. SELECTION OF REAL-TIME OPERATING ENVIRONMENTS

A. Factors Affecting Selection of Operating Environments

After the nature of closed-loop NCSs was studied, it was con-
cluded in the previous section that an appropriate OS should be
required to successfully implement the distributed architecture.
The following factors were considered in the selection of the OS
in the context of our maglev test bed.

1) Periodic Tasks: The OS should allow execution of peri-
odic tasks, such as sampling data, sending control data, and re-
ceiving feedback data.

2) Time Resolution: It was desirable that the time resolution
be as small as 14 s, which is 1% of the minimum time to close
the control loop.

3) Threads: Implementing the algorithms for closed-loop
real-time control over communication network involved si-
multaneous sampling and actuation. Thus, there is a need for
multithreaded programming.

B. Prevailing Operating Systems are Inadequate

Commercially available OSs, such as Windows and various
versions of Unix and Linux, could be immediate choices. Un-
fortunately, they are not real-time OSs and their performances
with reference to the above-mentioned factors turned out to be
dissatisfactory. Two timing tests, as stated by Volz [13], were
performed to observe their performances and are described in
the following two paragraphs.

The smallest amount of time that can be precisely measured
on an OS is known as its clock resolution. It depends upon
how the clock is implemented as hardware or software and
the method used to access it. There are several low-resolu-
tion and high-resolution clock-access commands in the above
mentioned OSs. For example, the time required to access the
clock in Redhat Linux 7.3 is approximately 0.01 s whereas its
clock resolution is 10 s. Because the time for the clock read
is less than the resolution, many consecutive clock reads can
be made before the value returned by the clock changes. This
principle was used in the first timing test. The number of times
the clock was accessed before the change in value returned
by the clock-access function was recorded in an array over
several iterations. Fig. 4 represents the results of the first timing
test on Windows 2000 and Redhat Linux 7.3. These two OSs
are implemented in two separate PCs with the same 1.7-GHz
Pentium IV processors. The programs created in these two
OSs are both on user level and set with the highest priorities.
Significant variations in these plots indicate the existence of
nondeterministic OS activities. This simple test demonstrated
the non-real-time characteristics of the two popular OSs.

290 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 3, NO. 3, JULY 2006

Fig. 4. Plots of the number of clock reads per iteration for the first timing test
on (a) Windows 2000 and (b) Redhat Linux 7.3.

When the value returned by the clock-access function
changes, the difference between this new returned value and the
previously returned value is the clock resolution. In the second
timing test, the clock resolution was calculated and plotted over
many iterations. There were variations in the values returned as
clock resolution. Thus, the maximum value is considered to be
the clock resolution for the corresponding OS. Fig. 5 presents
the results of the second timing test on Windows 2000 and
Redhat Linux 7.3, respectively. Whereas the clock resolution
of Redhat Linux 7.3 was found to be uniform, that of Windows
2000 was not.

C. Real-Time Operating Solutions

The Linux kernel provides several sophisticated services
such as hardware management, event polling, peripheral in-
terrupts, scheduler classes dealing with priorities, interprocess
communication, and implementation of network protocols such
as TCP/IP. However, Linux alone as an OS lacks real-time
support. It is necessary to make some modifications in its
kernel behaviors such as interrupt handling and scheduling
policies to make it a real-time platform with low latency and
high predictability of timing performances. Based on Linux
OS, there are two real-time operating solutions.

1) Real-Time Linux (RTLinux): RTLinux was developed at
the New Mexico Institute of Technology by Barabanov and Yo-
dailen [14]. The RTLinux scheduler treats the Linux OS kernel
as an idle task. Linux only executes when there are no real-time
tasks to run and the real-time kernel is inactive. The software
emulation of interrupt control hardware makes it possible that
the Linux task can never block interrupts or prevent itself from
being pre-empted. RTLinux has been designed so that the real-
time kernel never waits for the Linux to release any resources.
The real time-kernel does not directly request memory, share

Fig. 5. Plots of the clock resolutions obtained for the second timing test on (a)
Windows 2000 and (b) Redhat Linux 7.3.

TABLE II
RTAIS TYPICAL PERFORMANCE

spin locks, or synchronize data structures, except in tightly con-
trolled situations.

2) RTAI: RTAI was developed as a real-time operating envi-
ronment solution at Dipartimento di Ingeneria Aerospaziale Po-
litecnico di Milano (DIAPM) [14]. Based on the Linux kernel,
it provides deterministic and pre-emptive performance in addi-
tion to allowing the use of all standard Linux drivers, applica-
tions, and functions. RTAI modifies the Linux kernel to make
it a real-time operating environment. RTAI offers the same ser-
vices as the Linux kernel core, adding the features of a real-time
OS (RTOSs). Compared to the commercially available real-time
OSs, The RTAIs performance is very competitive with the best
commercial RTOSs such as VxWorks, QNX, etc. [14]. Table II
summarizes the typical performance of RTAI. RTAI is open
source and free under the terms of the GNU (GNU is not Unix)
lesser general public license.

Fig. 6 shows the results of the same two timing tests as in
Section III-B run on RTAI 24.1.12 with Redhat Linux 7.3. In
Fig. 6(a), the straight line indicates that there were no significant
indeterministic OS activities. Although the spikes in Fig. 6(b)
denote the variation in the clock resolution from 1 to 4.1 , the
clock resolution reported is consistently less than 5 s. This al-
lowed us to measure the time intervals as small as 5 s, which is
much less than the 1% criterion (14 s) set in Section III-A-2.
In the next section, we develop a novel real-time operating envi-
ronment based on RTAI with Linux that provides a competitive
solution to NCSs.

KIM et al.: REAL-TIME OPERATING ENVIRONMENT FOR NETWORKED CONTROL SYSTEMS 291

Fig. 6. Plots showing the results of the timing tests on RTAI 24.1.12 with
Redhat Linux 7.3. (a) Number of clock reads per iteration for the first timing
test. (b) Clock resolutions obtained for the second timing test.

IV. DEVELOPMENT OF THE NCS ARCHITECTURE

A. Test Bed

The single-actuator ball maglev system, developed by
Paschall [15] was used as the test bed for this research. As
shown in Fig. 7, a steel ball with the diameter of 12.7 mm is
held in stable levitation at a steady-state operating position. An
electromagnet is used to produce the force to support the ball
against gravity. The force is produced by controlling the current
in the coil of the electromagnet using a control system imple-
mented on a PC. The digital controller designed by Srivastava
snd Kim [5] to stabilize this maglev system is given by

(2)

National Instruments’ PCI-6025E is the data-acquisition
(DAQ) board for the experiments. Comedi [16] was used to
develop the hardware–software interface. Comedi is a free
software project for tools, libraries, and drivers for various
forms of DAQ and provides a collection of drivers for a variety
of common DAQ plug-in boards that use either a periph-
eral component interconnect (PCI) or peripheral component
microchannel interconnect architecture (PCMCIA) bus. It
works with the standard Linux kernel as well as the real-time
extensions such as RTLinux and RTAI. The single-core
module called Comedi provides common functionality, and the
DAQ-board-specific driver module provides low-level func-
tionality. Comedilib provides a developer-friendly interface to
the Comedi devices.

B. Components and Protocols

The distributed NCS as shown in Fig. 8 was developed. A
desktop PC with a 600-MHz Celeron processor with the imple-
mented controller acts as the Server PC. Another desktop PC

Fig. 7. Single-actuator ball maglev system [15].

Fig. 8. Block diagram of the developed distributed NCS.

with a 1.7-GHz Pentium IV processor with the PCI-6025E board
was used for DAQ and acts as the Client PC. Linux with RTAI is
implemented on both PCs. A 100-Mb/s Ethernet LAN was used
as the medium of communication. This arrangement has the ad-
vantage of using commercial off-the-shelf hardware. It might
not be strictly necessary to use a real-time OS on the server side
as long as it can ensure the time-constrained control signal cal-
culation and transmission. Since in our design the server con-
troller is event driven, it also has time-constrained events. Thus,
using real-time OS on both the sever side and the client side can
cause less time delay and make the communication between the
sever and the client more efficient and compatible.

The network communication was originally based on the
TCP/IP protocol suite, and the programs were developed in
the C programming language [17]. Functions provided by the
sockets application programming interface (API) were used
for implementation. The TCP/IP suite provides various ways
of data transfer. Although the TCP is a very reliable protocol
for communication over computer networks, it consumes more
computing resources, such as CPU time and memory, and
introduces significant time delays in the communication [18].
For closed-loop control over the network, the added reliability
provided by the TCP may not worth the cost of the network
delays it introduces [9]. On the other hand, the UDP does
not provide additional services, such as ensuring ordered data
delivery and robustness, as provided by the TCP and is less
reliable. Yet, the UDP has fewer overheads and induces fewer
network delays compared to the TCP. Reduced round-trip time
delays justified the use of the UDP for NCS applications. In this
paper, we intentionally introduce packet losses to demonstrate
the effectiveness of our real-time control algorithm. We even
introduce packet losses with up to a 20% drop rate. For this
purpose, the TCP is a costly protocol and not suitable for our
research. Thus, the UDP is used in this research.

292 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 3, NO. 3, JULY 2006

Fig. 9. Example timing diagram of the NCS communication. An arrow with
a cross tip denotes that the data packet was lost. In the current architecture, lost
data are not more detrimental to the system stability or performance than late
data.

C. Timing of Events

In the past, synchronization of clocks was tried to coordinate
the events in the networked control loop [19]. It is a compli-
cated process, generating additional network traffic to deliver
the synchronized clock signals, and also requires continuous ad-
justment to retain this synchronization once generated. A com-
paratively simpler approach is presented in this paper.

Our networked control architecture does not involve clock
synchronization and is based on a combination of time-driven
and event-driven communicating processes. Fig. 9 shows an ex-
ample timing diagram of network communication between the
client and the server. The communications labeled denote the
sensor data transferred from the client to the server, and the com-
munications labeled , the control signal data transferred from
the server to the client. The subscripts of these labels denote the
sampling-period indices and indicate whether the
data are an estimate . For example, is the sensor data of
the second sampling period, is the control signal data for the
third sampling period, and is the control signal estimate for
the second sampling period.

Fig. 10 shows a pseudocode for the execution of the
closed-loop control over the LAN. Sampling and actuation take
place on the client side and are time-driven whereas calculation
of the control signal is event-driven. It was calculated that if
the sampling period is 3 ms, the actuation has to occur within
1.4 ms after sampling for the system stability [12]. Thus, for
the 333.333-Hz sampling frequency, sampling and actuation
are two cyclic executions offset by 1.4 ms on the client side.
Thus, in the software, sampling and actuation are implemented
in two different periodic threads. The sampling thread samples
the data and sends them using a UDP socket. After sampling
has occurred, the actuation thread waits for 1.4 ms for the
arrival of the data on the same UDP socket. If the control data
arrive in time, they are used immediately for actuation. If not,
the estimate of the control data that the server sent in previous

Fig. 10. Psuedocode for the client–server communication.

messages will be used. A discussion on this estimation of
control data is given in the following.

The control signal is predicted on the server side and is
event-driven. The process on the server side waits for the
arrival of the sensor data from the client. As soon as the sensor
data arrive, an appropriate control signal is calculated and sent
using a UDP socket. In addition to the current control data, the
predicted control data for the next sampling periods are sent
to the client. The criterion to select will be discussed in the
following sections. To calculate these estimates, parametric
predictors are used. These predictors require past sensor data
that are transmitted to the server along with the current sensor
data.

The client stores and updates the values of these predicted
control data after each data-packet arrival from the server. In the
event of time delays and data losses, these estimated values are
used to generate control signals to stabilize the system. Another
option might be to output zero value, when the actuator receives
no control action [9]. With an open-loop unstable plant such as
our current maglev test bed, however, the stability of the system
will be eventually lost in the event of excessive time delays.
The multiple-step-ahead prediction is used to maintain system
stability.

D. Predictor-Based Control Strategy

As shown in Fig. 9, the server calculates the predicted con-
trols for the next sampling periods in addition to the control for
the current sampling period. Accurate prediction of control data
is important to guarantee the stability of the system. It is also
necessary to choose an appropriate order for the predictor. The
accuracy of prediction and the number of computations required
for prediction are the two important factors to consider in the de-
cision of the order of the predictor. A tradeoff exists between the
accuracy of a predictor and the number of computations done
for each prediction. In general, higher order predictors have a
better accuracy of prediction than lower-order ones of the same
type. On the other hand, higher-order predictors take more com-
putational time for a prediction than lower-order ones. A good
predictor should give reasonably accurate prediction with the
minimum usage of computational resources.

Another factor to be considered while deciding the order of
predictors is the amount of past data required. With higher order

KIM et al.: REAL-TIME OPERATING ENVIRONMENT FOR NETWORKED CONTROL SYSTEMS 293

TABLE III
BEST FITS FOR AR MODELS

predictors, more past data are required for computation. In any
communication architecture, however, there is practical limita-
tion. In the current architecture, the storage of past sensor data
and the control data is done on the client side. If the server had
to store these data, the data on the server side would be incom-
plete in the event of packet drops from the client to the server.
Therefore, the client passes the past sensor data to the server
each time along with the current sensor data. It is necessary that
these data travel in a single data packet. If it is fragmented into
multiple packets and any of these fragmented packets is lost, the
past data required for prediction by the server would be incom-
plete.

IP provides packet delivery service for protocols such as UDP
and TCP. The version of IP used in the current research is In-
ternet Protocol, version 4 (IPv4). A minimum reassembly buffer
size identified by IPv4 is 576 B [20]. This is the minimum data-
gram size that is guaranteed to be supported by any implemen-
tation of IPv4. In the event of congestion, UDP packets are lost.
Larger packets have a higher probability of getting lost than the
smaller ones. Thus, it is required to keep the size of packets to a
minimum while sending an adequate amount of data for better
prediction.

To collect online sensor data of the stable system, the test bed
was operated with the feedback loop closed locally. The sensor
data of the system for 17 162 samples were collected. MATLAB
used half of these data to develop predictors and the remaining
half for their validation. The percentage of the sensor variations
reproduced by the predictors is known as the best fit [21]. Higher
best fit implies better prediction. Table III represents the best-fit
values for autoregressive (AR) models for various step-ahead
predictors.

Based on the above results, an eighth-order predictor was de-
signed after numerous design iterations. Predictors were also de-
signed for up to four-step-ahead predictions of the sensor data.
The four-step-ahead prediction for the control signal was cal-
culated using the predicted sensor data. The parameter vectors
for various predictors, calculated using MATLAB, were used to
develop the following prediction equations for our maglev test
bed:

(3)

(4)

Fig. 11. Composition of an IPv4 packet transmitted from the client to the
server.

Fig. 12. Composition of an IPv4 packet transmitted from the server to the
client.

(5)

(6)

E. UDP Packet Composition

The composition of a typical 76-B-long IP packet transmitted
from the client to the server is shown in Fig. 11. It consists of
a 20-B-long IP header, an 8-B-long UDP header, an 8-B-long
time stamp, eight 4-B-long sensor-data values, and two 4-B-
long previous control-data values. A time stamp is taken on the
client side at sampling and is sent to the server. The server does
not modify the time stamp but sends it back to the client along
with the calculated control data. This time stamp is then used
by the client to identify whether the arrived data packet is the
expected packet or a delayed packet. If a packet is delayed, it is
simply discarded in the current scheme.

The composition of a typical 56-B-long IP packet transmitted
from the server to the client is shown in Fig. 12. It consists of
a 20-B-long IP header, an 8-B-long UDP header, an 8-B-long
time stamp, one current control-data value, and four predicted
control-data values.

F. Extension for Multiclient Cases

Our real-time operating environment configuration and pre-
dictor-based control strategy for NCSs can be extended for mul-
ticlient cases as shown in Fig. 2. Ethernet uses the carrier-sense
multiple access with collision detection (CSMA/CD) mecha-
nism to resolve contention on the communication medium. The
CSMA/CD protocol is specified in the IEEE 802.3 network stan-
dard and is described briefly as follows [18].

In the proposed NCS configuration, the server controller
is event-driven, and it works only after it receives the sensor
data from the client. By simply implementing a first-in-first-out

294 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 3, NO. 3, JULY 2006

Fig. 13. Round-trip time delays of the maglev setup.

(FIFO) queue on the sever side, there is no control-data col-
lision in the transmission path from the server controller to
the clients. However, in the transmission of sensor data from
the client sensors to the server controller, data collision maybe
a problem, and the network load depends on the sampling
frequencies of these client sensors.

1) Low Network Load Case: In Fig. 2, if the sampling fre-
quencies of these clients are very low and distinct, the clients
send their sensor data sporadically with different periods. Thus,
the possibility of data collision is very small. Our predictor-
based control strategy can be used to ensure the system stability
when data collision occurs occasionally. Experimental results in
the following section verify that our control strategy can ensure
system stability even with up to 20% data-packet losses.

2) Heavy Network Load Case: In Fig. 2, if the sampling fre-
quencies of these clients are very high and close, more than one
client might send their sensor data simultaneously. Several so-
lutions have been proposed for data collision problems for this
case. Some try to prioritize CSMA/CD (e.g., LonWorks) to im-
prove the response time of critical packets [22]. Using switched
Ethernet by subdividing the network architecture is another way
to increase its efficiency [18]. These aspects are out of the scope
of this paper.

V. EXPERIMENTAL VERIFICATION OF PROPOSED NCS AND ITS

REAL-TIME OPERATING ENVIRONMENT

To verify the effectiveness of the proposed NCS architecture
and the developed real-time operating environment, three sets of
experiments were conducted with the experimental setup shown
in Fig. 8. For this setup, Fig. 13 shows a round-trip time-delay
profile between the client and the sever. The average round-trip
time delay was about 230 s with its standard deviation of about
200 s. The sampling period of our system was 3 ms. Thus, we
introduced artificial time delays/packet losses if necessary for
the purpose of demonstrating the effectiveness of our algorithm
developed in Section IV.

A. Real-Time Operating Environment Experiments

1) First Set of Experiments: The performance of our real-
time operating environment was tested herein. First, the single-
actuator ball maglev system was controlled using a PC with a
1.7-GHz Pentium IV processor and a DAQ board PCI-6025E

Fig. 14. Response of tracking a sinusoidal command of 0.7 Hz with a
non-real-time operating system.

Fig. 15. Response of tracking a sinusoidal command with a frequency of 2.8
Hz in our real-time operating environment.

from National Instruments. Windows 2000 was used as the OS
to interact with this hardware. Fig. 14 shows the system re-
sponse of tracking a sinusoidal position command. The max-
imum command frequency that this control system could follow
was 0.7 Hz.

Then we replaced the control system with Linux RTAI with
Comedi. The conditions of the hardware setup were exactly
the same as those in the first experiment. The DAQ board was
again PCI-6025E. The PC used in this experiment contained the
same processor (1.7-GHz Pentium IV) as the one used in the
first experiment. Fig. 15 shows the system response of tracking
a sinusoidal position command. The maximum command fre-
quency that this NCS could follow was 2.8 Hz. This factor of
four improvement in command frequency resulted from the ef-
ficiency and the deterministic nature of our real-time operating
environment.

B. Performance of NCS Architecture Dealing With Packet
Losses Using Proposed Prediction Algorithm

1) Second Set of Experiments: In the second set of experi-
ments, the real-time NCS architecture was tested for the max-
imum number of allowable consecutive delays. No predicted
control was used, a data packet was assumed to be lost at the
3000th sample (at ms s), and no signal was output
to the actuator. The system being open-loop unstable, it lost sta-
bility immediately as expected, and the levitated ball could not
maintain its equilibrium position. The output of the system is
shown in Fig. 16(a).

In the second experiment of this set, the control signals based
on the prediction of the sensor data were used. Consecutive

KIM et al.: REAL-TIME OPERATING ENVIRONMENT FOR NETWORKED CONTROL SYSTEMS 295

Fig. 16. Plots of the ball displacement from the equilibrium position versus
time. (a) System response for the first experiment of the second set. (b) System
response for the second experiment of the second set.

packet losses were simulated by rejecting the arrived data suc-
cessive times every 3000 samples (i.e., every 9 s). The value of

was increased by one in every run of the experiments starting
from zero. The maximum value of for our maglev test bed
was found to be two. In other words, the system accommodated
two consecutive packet drops without losing stability. The re-
sponse of the system is shown in Fig. 16(b). Every time these
consecutive delays occurred, the system performance was de-
graded temporarily.

2) Third Set of Experiments: In the third set of experiments,
the real-time NCS architecture was tested for the maximum al-
lowable packet-loss rate. In the first experiment of this set of
experiments, no predicted control was used, an artificial delay
of 2 ms was introduced with the real-time sleep function on the
server side at the 7000th sample (at ms s). Since
the data did not arrive in time at the client side, the system lost
its stability and the ball could not maintain its equilibrium posi-
tion. The response of the system is shown in Fig. 17(a).

In the second experiment of this set, an artificial time delay of
2 ms was introduced on the server side for every th sampling
period starting from the 6500th sample (at ms s).
The value of was tested for 10, and the system was found
to be stable. The value of was then reduced by one for
each subsequent run of the experiment, and the system was
checked for stability. The minimum value of was found out
to be 5. This represented the case of one long time delay
of sporadic nature in five consecutive delays. Thus, system
stability was maintained in the event of up to 20% loss of
data packets in communication. The response of the system
for equal to five is shown in Fig. 17(b). In the event of
these simulated network delays, the ball did not fall down from
its equilibrium position. However, the position fluctuation of
the ball about the equilibrium point increased. This dynamic

Fig. 17. Plots of the ball displacement from the equilibrium position versus
time. (a) System response for the first experiment of the third set. (b) System
response for the second experiment of the third set.

degradation originated from the use of control signals based
on the predicted sensor data because actual sensor data were
not available due to data-packet losses.

VI. CONCLUSION

Ever-increasing computational capabilities and network
bandwidths enabled researchers to develop NCSs to implement
distributed control schemes. A real-time operating environment
is essential to properly time key communication events in
an NCS and to have complete control on their execution. In
this paper, we established a novel real-time environment for
NCSs based on RTAI 24.1.12 with Redhat Linux 7.3 after
considering several selection factors. The closed-loop control
of an open-loop unstable magnetic ball levitation system was
demonstrated over a 100-Mb/s Ethernet for its experimental
verification. Due to its better real-time performance, the UDP
was used in the communication architecture.

Our real-time operating environment improved the command-
following capability by a factor of 4 in terms of command
frequency. A multiple-step-ahead predictor was implemented
wherein predicted control data were used to stabilize the maglev
system in the event of time delays and data-packet losses
in the communication network. The number of consecutive
network delays compensated for by the system depends on
the accuracy of the predictors and the system dynamics. The
eighth-order predictor designed using an AR model was able
to stabilize the maglev test bed for up to 20% data-packet
losses in the LAN.

ACKNOWLEDGMENT

The authors would like to thank Dr. R. A. Volz and Dr. S.
Jayasuriya for their valuable comments and suggestions.

296 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 3, NO. 3, JULY 2006

REFERENCES

[1] H. Hu, L. Yu, P. W. Tsui, and Q. Zhou, “Internet-based robotic systems
for teleoperation,” Int. J. Assem. Automat., vol. 21, no. 2, pp. 143–151,
May 2001.

[2] M. Mitsuishi, S. Tomisaki, and T. Yoshidome, “Tele-micro-surgery
system with intelligent user interface,” in Proc. IEEE Int. Conf. Robotics
Automation, vol. 2, San Francisco, CA, Apr. 2000, pp. 1607–1614.

[3] R. C. Luo, J. H. Tzou, and Y. C. Chang, “Desktop rapid prototyping
system with supervisory control and monitoring through internet,”
IEEE/ASME Trans. Mechatron., vol. 6, no. 4, pp. 399–409, Dec. 2001.

[4] C. E. Garcia, R. Carelli, J. F. Postigo, and C. Soria, “Supervisory control
of a telerobotic system: a hybrid control approach,” Control Eng. Prac-
tice, vol. 11, no. 7, pp. 805–817, Jul. 2003.

[5] A. Srivastava and W.-J. Kim, “Internet-based supervisory control with
stochastic delay models,” in Proc. American Control Conf., vol. 1,
Denver, CO, Jun. 2003, pp. 627–632.

[6] S. Lankes, M. Reke, and A. Jabs, “A time-triggered Ethernet protocol for
real-time CORBA,” in Proc. 5th IEEE Int. Symp. Object-Oriented Real-
Time Distributed Computing, Washington, DC, Apr. 2002, pp. 215–222.

[7] C. Venkatramani, “Design, implementation and evaluation of RETHER:
A real-time Ethernet protocol,” Ph.D. dissertation, State Univ. New York
Stony Brook, Stony Brook, Dec. 1996.

[8] J. Eker and A. Cervin, “Distributed wireless control using bluetooth,”
in Proc. IFAC Conf. New Technologies Computer Control, Hong Kong,
China, Nov. 2001.

[9] N. J. Ploplys, P. A. Kawka, and A. G. Alleyne, “Closed-loop control over
wireless network,” IEEE Contr. Syst. Mag., vol. 24, no. 3, pp. 58–71, Jun.
2004.

[10] W. R. Ferrell, “Delayed force feedback,” IEEE Trans. Human Factors
Electron., vol. HFE-8, no. 5, pp. 449–455, Oct. 1967.

[11] R. J. Anderson and M. W. Spong, “Bilateral control of teleoperators with
time delay,” IEEE Trans. Automat. Contr., vol. 34, no. 5, pp. 494–501,
May 1989.

[12] L. Conway, R. A. Volz, and M. W. Walker, “Teleautonomous systems:
Projecting and coordinating intelligent action at a distance,” IEEE Trans.
Rob. Autom., vol. 6, no. 2, pp. 146–157, Apr. 1990.

[13] R. A. Volz, Real-Time Computing, Lecture Notes for CPSC 456, Dept.
Comput. Sci., Texas A&M University, College Station, TX, 2003.

[14] P. Mantegazza. DIAPM RTAI—Real-time application. [Online] Avail-
able: http://www.rtai.org

[15] S. C. Paschall II, “Design, fabrication, and control of a single actuator
magnetic levitation system,” Senior honors thesis, Dept. Mech. Eng.,
Texas A&M Univ., College Station, May 2002.

[16] D. Schleef. (2000) Linux Control and measurement device interface.
[Online] Available: http://www.comedi.org

[17] A. Ambike, “Closed-loop real-time control on distributed networks,”
Masters’ thesis, Dept. Mech. Eng., Texas A&M Univ., College Station,
Aug. 2004.

[18] A. S. Tanenbaum, Computer Networks, 3rd ed. Upper Saddle River,
NJ: Prentice-Hall, 2001.

[19] L. Zhang, Z. Liu, and C. H. Xia, “Clock synchronization algorithms for
network measurements,” in Proc. IEEE INFOCOM, vol. 1, Jun. 2002,
pp. 160–169.

[20] W. R. Stevens, UNIX Network Programming, 2nd ed. Upper Saddle
River, NJ: Prentice-Hall, 1998.

[21] L. Ljung and T. Soderstrom, Theory and Practice of Recursive Identifi-
cation. Cambridge, MA: MIT Press, 1983.

[22] M. Neugebauer, J. Plonnigs, K. Kabitzsch, and P. Buchholz, “Automated
modeling of LonWorks building automation networks,” in Proc. IEEE
Int. Workshop Factory Communication System, Sep. 2004, pp. 113–118.

Won-jong Kim (S’89–M’97–SM’03) received
the B.S. (Hons.) and M.S. degrees in control and
instrumentation engineering from Seoul National
University, Seoul, Korea, in 1989 and 1991, respec-
tively, and the Ph.D. degree in electrical engineering
and computer science from the Massachusetts
Institute of Technology (MIT), Cambridge, in 1997.

In 2000, he joined the Department of Mechanical
Engineering, Texas A&M University (TAMU),
College Station, where he is currently Assistant
Professor. He was also with SatCon Technology Cor-

poration, Cambridge, MA, for three years. His teaching and research interests
focus on the analysis, design, and real-time control of mechatronic systems,
networked control systems, and nanoscale engineering and technology. He
holds three US patents on precision positioning systems.

Dr. Kim received the Grand Prize from the Korean Institute of Electrical En-
gineers’ Student Paper Contest in 1988. He received the Gold Prize from Sam-
sung Electronics’ Humantech Thesis Prize for his 1997 dissertation. He was a
semifinalist of the NIST’s Advanced Technology Program 2000 Competition.
NASA granted him the Space Act Award in 2002 and he was appointed a Se-
lect Young Faculty Fellow by TAMU College of Engineering and the Texas
Engineering Experiment Station twice in 2003 and 2005. He is the Chair of the
ASME Nanoscale Control Technical Panel and a member of the IEEE Nanotech-
nology Council. He received the Professional Engineering Publishing Award for
the best paper published in the 2004 volume of the Journal of Engineering Man-
ufacture in 2005. He is a member of ASME, ASPE, KSEA, Pi Tau Sigma, and
Sigma Xi.

Kun Ji (S’04) was born in Yangzhou, Jiangsu, China,
in 1977. He received the B.S. and M.S. degrees in me-
chanical engineering from Tsinghua University, Bei-
jing, China, in 1999 and 2002, respectively. He is cur-
rently pursuing the Ph.D. degree at Texas A&M Uni-
versity, College Station.

His research interests are networked control
system design and real-time control system design.

Ajit Ambike was born in Pusegaon, India, in 1979.
He received the B.E. degree in mechanical engi-
neering from Government College of Engineering,
Karad, India, in 2000 and the M.S. degree in me-
chanical engineering from Texas A&M University,
College Station, in 2004.

Currently, he is a Software Engineer with NuView,
Inc., Houston, TX. His research interests include net-
worked control systems and real-time computing.

	toc
	Real-Time Operating Environment for Networked Control Systems
	Won-jong Kim, Senior Member, IEEE, Kun Ji, Student Member, IEEE,
	I. I NTRODUCTION

	Fig.€1. Block diagram of feedback control over network. The inde
	Fig.€2. Distributed control system with multiple clients.
	II. N EED F OR R EAL -T IME O PERATING E NVIRONMENTS

	Fig.€3. Time-delay components of the network latency in a period
	TABLE€I N OMENCLATURE OF T IME -D ELAY C OMPONENTS
	III. S ELECTION OF R EAL -T IME O PERATING E NVIRONMENTS
	A. Factors Affecting Selection of Operating Environments
	1) Periodic Tasks: The OS should allow execution of periodic tas
	2) Time Resolution: It was desirable that the time resolution be
	3) Threads: Implementing the algorithms for closed-loop real-tim

	B. Prevailing Operating Systems are Inadequate

	Fig.€4. Plots of the number of clock reads per iteration for the
	C. Real-Time Operating Solutions
	1) Real-Time Linux (RTLinux): RTLinux was developed at the New M

	Fig.€5. Plots of the clock resolutions obtained for the second t
	TABLE€II RTAI S T YPICAL P ERFORMANCE
	2) RTAI: RTAI was developed as a real-time operating environment

	Fig.€6. Plots showing the results of the timing tests on RTAI 24
	IV. D EVELOPMENT OF THE NCS A RCHITECTURE
	A. Test Bed
	B. Components and Protocols

	Fig.€7. Single-actuator ball maglev system [15] .
	Fig.€8. Block diagram of the developed distributed NCS.
	Fig.€9. Example timing diagram of the NCS communication. An arro
	C. Timing of Events

	Fig.€10. Psuedocode for the client server communication.
	D. Predictor-Based Control Strategy

	TABLE€III B EST F ITS FOR AR M ODELS
	Fig.€11. Composition of an IPv4 packet transmitted from the clie
	Fig.€12. Composition of an IPv4 packet transmitted from the serv
	E. UDP Packet Composition
	F. Extension for Multiclient Cases

	Fig.€13. Round-trip time delays of the maglev setup.
	1) Low Network Load Case: In Fig.€2, if the sampling frequencies
	2) Heavy Network Load Case: In Fig.€2, if the sampling frequenci
	V. E XPERIMENTAL V ERIFICATION OF P ROPOSED NCS AND I TS R EAL -
	A. Real-Time Operating Environment Experiments
	1) First Set of Experiments: The performance of our real-time op

	Fig.€14. Response of tracking a sinusoidal command of 0.7 Hz wit
	Fig.€15. Response of tracking a sinusoidal command with a freque
	B. Performance of NCS Architecture Dealing With Packet Losses Us
	1) Second Set of Experiments: In the second set of experiments,

	Fig.€16. Plots of the ball displacement from the equilibrium pos
	2) Third Set of Experiments: In the third set of experiments, th

	Fig.€17. Plots of the ball displacement from the equilibrium pos
	VI. C ONCLUSION
	H. Hu, L. Yu, P. W. Tsui, and Q. Zhou, Internet-based robotic sy
	M. Mitsuishi, S. Tomisaki, and T. Yoshidome, Tele-micro-surgery
	R. C. Luo, J. H. Tzou, and Y. C. Chang, Desktop rapid prototypin
	C. E. Garcia, R. Carelli, J. F. Postigo, and C. Soria, Superviso
	A. Srivastava and W.-J. Kim, Internet-based supervisory control
	S. Lankes, M. Reke, and A. Jabs, A time-triggered Ethernet proto
	C. Venkatramani, Design, implementation and evaluation of RETHER
	J. Eker and A. Cervin, Distributed wireless control using blueto
	N. J. Ploplys, P. A. Kawka, and A. G. Alleyne, Closed-loop contr
	W. R. Ferrell, Delayed force feedback, IEEE Trans. Human Factors
	R. J. Anderson and M. W. Spong, Bilateral control of teleoperato
	L. Conway, R. A. Volz, and M. W. Walker, Teleautonomous systems:
	R. A. Volz, Real-Time Computing, Lecture Notes for CPSC 456, Dep
	P. Mantegazza . DIAPM RTAI Real-time application . [Online] Avai
	S. C. Paschall II, Design, fabrication, and control of a single
	D. Schleef . (2000) Linux Control and measurement device interfa
	A. Ambike, Closed-loop real-time control on distributed networks
	A. S. Tanenbaum, Computer Networks, 3rd ed. Upper Saddle River,
	L. Zhang, Z. Liu, and C. H. Xia, Clock synchronization algorithm
	W. R. Stevens, UNIX Network Programming, 2nd ed. Upper Saddle Ri
	L. Ljung and T. Soderstrom, Theory and Practice of Recursive Ide
	M. Neugebauer, J. Plonnigs, K. Kabitzsch, and P. Buchholz, Autom

