MEEN 431 Advanced System Dynamics and Controls

Unified framework for modeling, analysis, synthesis, design and simulation of mechanical systems with energy exchange across multiple domains; study of mechanical, electrical, hydraulic and thermal subsystems; Newtonian mechanics, rigid body dynamics, multiple degrees of freedom vibrations and control system design. Three credit hours (3-0).

Instructor:

Won-jong Kim, Ph.D.
Associate Professor
223 Mechanical Engineering Office Building
(979)845-3645, phone
wjkim@tamu.edu, e-mail
http://alum.mit.edu/www/wjkim, webpage

TA:

Tejasvi K. Khambhampati
215 Engineering/Physics Building
(512)998-3839, phone
tejasvikrishna@tamu.edu, e-mail

Lectures:

MWF 11:30 AM–12:20 PM at 204 ENPH

Office Hours:

Dr. Kim: MW 12:20 PM–1:20 PM at 223 MEOB or 204 ENPH, or by appointment
TA: by appointment

Textbooks (required):

References:

On-Line Course Material:

All course material will be available at http://wonjongkim.tamu.edu/MEEN431. Please, check the site frequently, at least weekly.

Learning Outcomes and Course Objectives:

To build upon the fundamentals of analytical dynamics and feedback control to:

- Understand the phenomenon of vibration
- Understand limitations of feedback and controller design
- Prediction of dynamics behavior of mechanical systems by analytical methods and computer simulation
- Synthesize/design mechanical systems to achieve desired performance goals

Prerequisites:

- MEEN 364, Dynamic Systems and Controls
- Working familiarity with Matlab/Simulink is expected.

Grading:

- Mid-term exams for 60% total
- Final exam for 30%
- Homework for 10% total

Exams:

There will be four mid-term exams. One of the four mid-term exams may be replaced with a design project. The comprehensive final exam will be held as scheduled in the University Schedule of Classes.

- Exam 1: in-class, TBA
- Exam 2: in-class, TBA
- Exam 3: in-class, TBA
- Exam 4: in-class, TBA
- Final exam: 10:30 AM–12:30 PM, Tuesday, May 10

Homework:

There will be about 10 or 11 homework sets, and they are due at the beginning of class of the due dates. No late homework will be accepted. All written work must be clear and professionally done with the necessary steps leading to the solution clearly marked. Homework solutions will be made available on the course web site. Only part of the homework problems will be selected randomly for grading and it will carry 80% of the grade for that homework set. The remaining problems will receive a checkmark, if a solution is present, and they will receive 20% of the grade for that homework set. Homework is intended to show your individual work. Each student is required to turn-in his or her solutions to the homework assignments. However, you are allowed to form groups or join each other on discussions regarding the problems.
Projects:

A design project may be assigned to replace one of the four mid-term exams. You are allowed to work in groups of three. A typed report will be required, and no late project report will be accepted. Specific instructions will be provided with the project assignment.

Policy on Grading Complaints:

If you feel a mistake was made in grading any material, please first contact the person doing the grading within a week after the graded paper is distributed. If you are not satisfied with the resolution of the matter then talk to me. After the one week discussion period, we will not review your exams or change grades. Make your complaint to me in writing and via e-mail. Be specific about your complaints. Please note I do not negotiate my partial-credit policy with students.

Grading Policy:

- A: 90–100
- B: 80–89
- C: 70–79
- D: 60–69
- F: less than 60

Absences:

Work missed due to absences will only be excused for University-approved activities in accordance with TEXAS A&M UNIVERSITY STUDENT RULES (see http://student-rules.tamu.edu/rule7.htm). Specific arrangements for make-up work in such instances will be handled on a case-by-case basis. In accordance with recent changes to Rule 7, please be aware that in this class any “injury or illness that is too severe or contagious for the student to attend class” will require “a medical confirmation note from his or her medical provider” even if the absence is for less than 3 days (see 7.1.6.2 injury or illness less than three days).

Academic Integrity:

Aggie Honor Code: “An Aggie does not lie, cheat, or steal, or tolerate those who do.”

Upon accepting admission to Texas A&M University, a student immediately assumes a commitment to uphold the Honor Code, to accept responsibility for learning and to follow the philosophy and rules of the Honor System. Students will be required to state their commitment on examinations, research papers, and other academic work. Ignorance of the rules does not exclude any member of the Texas A&M University community from the requirements or the processes of the Honor System. For additional information please visit: aggiehonor.tamu.edu.

On all course work, assignments, and examinations at Texas A&M University, the following Honor Pledge shall be preprinted and signed by the student:

“On my honor, as an Aggie, I have neither given nor received unauthorized aid on this academic work.”

Signature of Student
ADA Statement:

The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact Disability Services, currently located in the Disability Serviced building at the Student Services at White Creek complex on west campus or call 845-1637. For additional information visit http://disability.tamu.edu.

Following is a tentative schedule. The pace will be adjusted as the semester progresses.

<table>
<thead>
<tr>
<th>Week</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Review - kinematics, FBD, Newtonian mechanics, equations of motion, 1-DOF vibrations</td>
</tr>
<tr>
<td>2</td>
<td>Multi-DOF vibrations, free and forced vibrations</td>
</tr>
<tr>
<td>3</td>
<td>Modal analysis, rotating transformation, angular momentum</td>
</tr>
<tr>
<td>4</td>
<td>Rigid-body kinematics, inertia matrix</td>
</tr>
<tr>
<td>5</td>
<td>Rigid-body dynamics, examples, work-energy principle</td>
</tr>
<tr>
<td>6</td>
<td>Modeling of interconnected systems—multiple energy domains</td>
</tr>
<tr>
<td>7</td>
<td>Static and dynamic equilibria, linearized dynamics, active stabilization</td>
</tr>
<tr>
<td>8</td>
<td>Steady-state power requirement for prime-mover/load combinations, operating points</td>
</tr>
</tbody>
</table>

Advanced Control

<table>
<thead>
<tr>
<th>Week</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Review - Transfer functions, performance specifications, Routh stability criterion</td>
</tr>
<tr>
<td>10</td>
<td>Controller design, integrator anti-windup</td>
</tr>
<tr>
<td>11</td>
<td>Sensitivity, feedback, and stability</td>
</tr>
<tr>
<td>12</td>
<td>PID autotuning, frequency response, loop-shaping design of compensators</td>
</tr>
<tr>
<td>13</td>
<td>Nyquist stability criterion, ideal Bode characteristics</td>
</tr>
<tr>
<td>14</td>
<td>State-space design, pole placement, state observers and output feedback</td>
</tr>
</tbody>
</table>

Final exam on Tuesday, May 10, 10:30 AM–12:30 PM