MEEN 364 Parasuram
Lecture 8,9,7 August 8, 2001

HANDOUT E.§ - EXAMPLES ON MODELLING OF ELECTRICAL,
ELECTROMECHANICAL SYSTEMS

Note that the time dependence of variables is ignored for all manipulations.
Example 1: An electrical circuit
Consider the circuit shown below.

+ R L

| 1

Writing the Loop equation for the above circuit, we have

di 1

V,—Ri—L———|idt =0. 1

a ] | (1)
We know that
o

dt
Therefore substituting the above relation in equation (1), we have
2
v, =194, g%, 9 @)
dt dt C

Equation (2) represents the governing differential equation of the circuit shown above.
State-space representation

Let the states of the system be defined as

q =X,
. A3)
q=x,.
From the above relations, we get
. @)
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Substituting the relations given by equation (3) in equation (2), we get

2
V :Ld q+R@+i,

‘ dr’ dt C
V. = Lx2+ Rx, +ix1,
C

SN N (5)
LC L L

Rewriting equations (4) and (5) in matrix format, we have

s
A TS Y (6)
X2 c L2l |

If the output of the system is the voltage drop across the capacitor, then the output
equation can be written as

_|1 0 X 7
:>y_|:E ]xz. @)

Equations (6) and (7) represent the state-space form of the circuit.

Example 2: An electrical circuit

R, L
C
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Note that,
. dq, . _dq,
I =—, I,=—-. 8
V= 2= 8)
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Writing the loop closure equation for the loop ABFGHA, we have
14 —lj(i —i)dt—Ri =0 (9)
in C 1 2 1"1 :

Substituting equation (8) in equation (9), we have

y 042 _p 94 _ (10)
C dt

Writing the loop closure equation for the loop BCDEFB, we get

) di, 1 . e, .
Rzzz+L7;+Ejzzdt+zj(lz—zl)dt=0, o

:>Ldzq2 +R 44, +2q2 _4 ),
dr’ *dt C C

Equations (10) and (11) represent the governing differential equations for the circuit
shown.

State-space representation

Let the states of the system be defined as

q, =X,
q, = Xx,, (12)
q, = X;.

From the above relations, the following equation can be deduced.

2 =x,. (13)
Substituting the relations given by equation (12) in equation (10), we have

I/l-n _91_q2 _Rl dgl :O,
C dt

mn

=V, —lx1 +lx2 ~ R, x1 =0,
C C

1
———Xx, + X, +—V, .
RC RC R,

= X1 =

(14)
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Similarly substituting the relations given by equation (12) in equation (11), we get

2
d QZ+R2 d%+2% —&20,

L 2
dt dt c C

- 2 1
= Lx3+R,x; +—x, ——x, =0,
C C

: 1 2 R,
=S X3 =—X, ——— X, ——=X,. 15
Tre et L’ (15)

Rewriting equations (13), (14) and (15) in matrix format, we have

| 1 1 1
X T p 0 Irx n
2 RC RC R
x|=| 0 0 1 {lx,|+| 0, (16)
» 1 2 R,
X3 = B o

IC ILC LI

From the circuit it can be seen that the output is given by

iy .
Vow = [idt+ Rii,,

1 dg
= Vout :qu +R17t1

2

Substituting the value of R, % from equation (10) in the above relation, we get
4

1 49, 49
Vo o=—gq,+V, —D 12
out qu in C
:>Vout :£x2_lxl+1/in’
C C
X

1 2
:>Y—|:—E - o] x [+, (17)

X3

Therefore equations (16) and (17) represent the state-space form of the above circuit.
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Example 3: An electromechanical system

Consider the following electromechanical system shown.

L R
AN
+ +y
| «—— QV
b -
fs(g_ a +X
L kA M
C

&L x

The electromechanical system shown above represents a simplified model of a capacitor
microphone. The system consists a parallel plate capacitor connected into an electric
circuit. Capacitor plate ‘a’ is rigidly fastened to the microphone frame. Sound waves pass
through the mouthpiece and exert a force fi(t) on plate ‘b’, which has mass, ‘M’ and is
connected to the frame by a set of springs and dampers. The capacitance C is a function
of the distance x between the plates. The electric field in turn produces a force f; on the
movable plate that opposes its motion.

Kinematics stage

Let the movable plate ‘b’ move a distance ‘x’ units. Then the velocity and the
acceleration of the plate is given by X, x respectively. It can be seen from the figure

that the current ‘i’ flows through the electric circuit in the counter clockwise direction.
Kinetics stage

First let us consider the electric circuit.

R
P By e Vo NI
O'v
>i | | -
| |
C(x)
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Writing the loop closure equation for the above circuit, we get

Lﬁ+Ri+ljidt:V.
dt C

Since,

- da
dt’
equation (18) reduces to

2
Ld ?+R@+1:V.
dt da C

Free body diagram of the movable plate of mass M

FO |
fox ——>

—>
cx

Jo—»p

Writing the Newton’s second law of motion, we have
ZFX =ma,
= kx+cx+ f,— f.(1)=—mx,

= mx+cx+hkxc+ f, = f.(0).

Parasuram
August 8, 2001

(18)

(19)

(20)

Equations (19) and (20) represent the governing differential equations of motion for the

electromechanical system considered. The force f; is defined as

2

_q
/. 2e A’

where A is the surface area of the plates and € is the dielectric constant of the material

between the plates.
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Since f. is non-linear in nature, equation (20) is a non-linear equation. The linearization
of a non-linear equation is explained in the handout on linearization. Once the equation is
linearized, then it can be represented in the state-space form. This section is dealt with, in
detail in a later handout.

Assignment

1) Find the differential equations for the circuit shown below and put them in state-
variable form.

R R» R;
A VA VA NEEEEVA VA VA NIV VA VAN
—O

c L L c, L

VinC) -1 T Vout

2) Consider the schematics of an electromechanical shaker as shown below. This system
consists of a table of mass M, and a coil whose mass is m. A permanent magnet rigidly
attached to the ground provides a steady magnetic field, i.e., the motion of the coil
through the magnetic field induces a voltage in the coil that is proportional to its velocity.
The passage of current through the coil causes it to experience a magnetic force
proportional to the current. Derive the equations governing the dynamics of this system.

M XT
k1 k2 b2 bl
|




	State-space representation
	Example 2: An electrical circuit
	State-space representation
	Kinematics stage
	Kinetics stage
	Free body diagram of the movable plate of mass M

	Assignment

