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HANDOUT E.8 - EXAMPLES ON MODELLING OF ELECTRICAL,
ELECTROMECHANICAL SYSTEMS

Note that the time dependence of variables is ignored for all manipulations.

Example 1: An electrical circuit

Consider the circuit shown below.
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     i
Va         C

   -

Writing the Loop equation for the above circuit, we have
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Therefore substituting the above relation in equation (1), we have
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Equation (2) represents the governing differential equation of the circuit shown above.

State-space representation

Let the states of the system be defined as
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From the above relations, we get
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Substituting the relations given by equation (3) in equation (2), we get
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Rewriting equations (4) and (5) in matrix format, we have
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If the output of the system is the voltage drop across the capacitor, then the output
equation can be written as
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Equations (6) and (7) represent the state-space form of the circuit.

Example 2: An electrical circuit

  R2          L
   C  D

    i2
+  A    B    C        F C  E

Vin i1      R1 Vout

H        G
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Writing the loop closure equation for the loop ABFGHA, we have

.0)(1
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C
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Substituting equation (8) in equation (9), we have

.01
1

21 =−−−
dt

dqR
C

qqVin     (10)

Writing the loop closure equation for the loop BCDEFB, we get
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Equations (10) and (11) represent the governing differential equations for the circuit
shown.

State-space representation

Let the states of the system be defined as
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From the above relations, the following equation can be deduced.
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Substituting the relations given by equation (12) in equation (10), we have
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Similarly substituting the relations given by equation (12) in equation (11), we get
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Rewriting equations (13), (14) and (15) in matrix format, we have
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From the circuit it can be seen that the output is given by
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Substituting the value of 
dt

dqR 1
1  from equation (10) in the above relation, we get
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Therefore equations (16) and (17) represent the state-space form of the above circuit.
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Example 3: An electromechanical system

Consider the following electromechanical system shown.

L      R

       +   +y
   i           v

b         -
      fs(t)     a    +x

k M

c

         x

The electromechanical system shown above represents a simplified model of a capacitor
microphone. The system consists a parallel plate capacitor connected into an electric
circuit. Capacitor plate ‘a’ is rigidly fastened to the microphone frame. Sound waves pass
through the mouthpiece and exert a force fs(t) on plate ‘b’, which has mass, ‘M’ and is
connected to the frame by a set of springs and dampers. The capacitance C is a function
of the distance x between the plates. The electric field in turn produces a force fe on the
movable plate that opposes its motion.

Kinematics stage

Let the movable plate ‘b’ move a distance ‘x’ units. Then the velocity and the

acceleration of the plate is given by 
...

, xx  respectively. It can be seen from the figure

that the current ‘i’ flows through the electric circuit in the counter clockwise direction.

Kinetics stage

First let us consider the electric circuit.

  R
L

        +
          V

       i               -

C(x)
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Writing the loop closure equation for the above circuit, we get

.1 Vidt
C

Ri
dt
diL =++ ∫     (18)

Since,

dt
dqi = ,

equation (18) reduces to
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q
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Free body diagram of the movable plate of mass M

       fs(t)

       kx
         M

       
.
xc

        fe

Writing the Newton’s second law of motion, we have
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Equations (19) and (20) represent the governing differential equations of motion for the
electromechanical system considered. The force fe is defined as

,
2

2

A
qfe ε

=

where A is the surface area of the plates and ε is the dielectric constant of the material
between the plates.
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Since fe is non-linear in nature, equation (20) is a non-linear equation. The linearization
of a non-linear equation is explained in the handout on linearization. Once the equation is
linearized, then it can be represented in the state-space form. This section is dealt with, in
detail in a later handout.

Assignment

1) Find the differential equations for the circuit shown below and put them in state-
variable form.

R1          R2 R3

+           C1    L        C2
     Vin Vout
          -

2) Consider the schematics of an electromechanical shaker as shown below. This system
consists of a table of mass M, and a coil whose mass is m. A permanent magnet rigidly
attached to the ground provides a steady magnetic field, i.e., the motion of the coil
through the magnetic field induces a voltage in the coil that is proportional to its velocity.
The passage of current through the coil causes it to experience a magnetic force
proportional to the current. Derive the equations governing the dynamics of this system.

M x

       k1     k2         b2      b1
   y

  m

          V

        R        L
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