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Lecture 3: Modeling of Rotational Mechanical Systems

The objective of this lecture is to review the basic building blocks of lumped

parameter rotational mechanical systems and to build the foundations that

will enable you to model more complex dynamic systems consisting of trans-

lation and rotational elements. Corresponding to the translational elements

mass, spring and damper, are the rotational inertia, rotational spring and

rotational damper, respectively. We now discuss these elements briefly.

Rotational Inertia Elements:

An ideal rotational inertia is shown in the Figure 1. Motion is considered

with respect to a non-accelerating rotating reference frame, usually a fixed

point on earth or another non-accelerating rotating object.

The equation of motion for an ideal inertia, J(t), is based on Newton’s

second law for rotational motion which expresses the conservation of angular

momentum, as follows:

d(J(t)Ω1g(t))

dt
=

n∑

i=1
Ti(t), (1)

where if we assume that the inertia is a constant, J , we can rewrite this

equation as

J(
dΩ1g(t)

dt
) =

n∑

i=1
Ti(t) = TJ , (2)

where Ω1g(t) is the angular velocity of the inertia relative to the ground

reference (g) and TJ is the net torque (or twisting moment) acting on the
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inertia.

Because of the non-accelerating nature of the rotating reference frame

dΩ1g(t)

dt
=

dΩ1(t)

dt
, (3)

and

Ω1g(t) =
dθ1(t)

dt
, (4)

resulting in the following equation of motion for the ideal inertia, J

J(
d2θ1(t)

dt2
) = TJ(t). (5)

Furthermore, the action of the applied torque represents work being done

on the inertia as it accelerates, increasing its kinetic energy. The rate at which

energy is stored in the system is equal to the rate at which work is expended

on it. Using the first law of thermodynamics (or the law of conservation of

energy) we have
dEEEK(t)

dt
= TJ(t)Ω1g(t). (6)

To find the energy of the system we need to integrate over a period [0, t], as

follows:
∫ EEEK(t)

EEEK(0)
dEEEK =

∫ t

0
TJ(t)Ω1g(t)dt =

∫ t

0
JΩ1g(t)(

dΩ1g(t)

dt
)dt = J

∫ Ω1g(t)

Ω1g(0)
Ω1g(t)dΩ1g,

(7)

or

EEEK(t) = EEEK(0) + (
J

2
)Ω2

1g(t). (8)

This is the well-know formula for the kinetic energy of a rotational inertial

element.

Equation (5) indicates that because of the integrations involved, it takes

some time for the rotating object to build-up angular velocity and angular

displacement. As such, it would not be realistic to attempt to apply a step

change in angular velocity (or angular displacement) of the inertia. This

would require an infinite torque and an infinite source of power!
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Figure 1: Free-body diagram of an ideal rotational inertia.

Rotational Stiffness Elements (or Springs):

An ideal rotational spring, stores potential energy as it is twisted, i.e.

wound up. This is depicted in Figure 2. The figure shows a spring in its

relaxed state of no torques acting, TK = 0, and with the torque, TK , acting

at both ends, in free-body diagram fashion. Because an ideal rotational spring

has no mass, the torque transmitted by it is undiminished during rotational

acceleration. Therefore, the torques acting on its ends must be equal and

opposite (Newton’s third law of motion). The elemental equation for such a

rotational spring derives from Hooke’s law, namely

TK(t) = K[θ1(t)− θ2(t)], (9)

where θ1(t) and θ2(t) are the angular displacements of the ends from their

local references r1 and r2.

In derivative form, this equation becomes

TK(t)

dt
= K[Ω1g(t)− Ω2g(t)], (10)

where Ω1g(t) and Ω2g(t) are the angular velocities of the ends relative to the

non-accelerating reference g. In each case, the sign convention employed for
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Figure 2: Free-body diagram of an ideal rotational spring.

motion is clockwise positive when viewed from the left.

In this development we have assumed that the rotational spring has a

constant stiffness K. If this is not the case, we can write the general form of

equation (9) as

TNLS(t) = fNL(θ1(t)− θ2(t)), (11)

where NL stands for a non-linear rotational spring. Simplification of this

equation, via linearization, to a rotational spring with an equivalent stiffness

near an operating point will be discussed in future lectures.

Similar to the case of an ideal inertia, we can investigate the energy point-

of-view of an ideal rotational spring. The conservation of energy for an ideal

rotational spring can be expressed as

dEEEP (t)

dt
= TK(t)Ω1g(t). (12)

To find the energy of the system we need to integrate, as follows:

∫ EEEP (t)

EEEP (0)
dEEEP =

∫ t

0
TK(t)Ω1g(t)dt = (

1

K
)

∫ t

0
TK(t)(

dTK(t)

dt
)dt = (

1

K
)

∫ TK(t)

TK(0)
TK(t)dTK ,

(13)
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or

EEEP (t) = (
1

2K
)T 2

K(t). (14)

This is the formula for the potential energy of an ideal rotational spring.

As in the case of the ideal inertia, it would not be realistic to attempt to

apply a step change in torque to a spring. Such a torque would have to rotate

infinitely fast to twist the spring suddenly, which would require an infinite

source of power!

Rotational Damping Elements (or Dampers):

Just as friction between moving parts of a translational system give rise to

translational damping, friction between rotating parts in a rotational system

is the source of rotational damping. An ideal rotational damper is shown in

Figure 3. Because an ideal rotational damper contains no mass, the torque

transmitted through it is undiminished during rotational acceleration. There-

fore, the torques acting at its ends must always be equal and opposite. The

basic equation of an ideal rotational damper is

TB(t) = B(Ω1g(t)− Ω2g(t)), (15)

where TB(t) is the torque transmitted by the damper. With a rotational

damper there is no storage of retrievable mechanical work, as the work being

done by an applied torque becomes dissipated as thermal internal energy.

The relationship between the torque and angular velocity is instantaneous.

Thus, it is realistic to apply step changes of either torque or angular velocity

to such an element.

An ideal rotating damper arises from viscous friction between well-lubricated

rotating mechanical parts of a system. This is the only form of damping that

is linear. Non-ideal forms of damping are very common in practice. How-

ever, as in the case of translational motion, non-ideal rotational damping is

5



Figure 3: Free-body diagram of an ideal rotational damper.

characterized by non-linearities, such as dry (Coulomb) friction, aerodynamic

damping, structural damping. These forms of damping can be linearized for

simplification when no discontinuities exist in the torque-angular velocity

characteristics of the damper, at the expense of accuracy of the analysis.

Non-ideal rotational damping is found, for example, in poorly lubricated

metal-metal contact rotating surfaces.

In general, for a nonlinear rotational damper we can write

TNLD(t) = fNL(Ω1g(t), Ω2g(t)), (16)

where NL stands for a non-linear rotational damper. Simplification of this

equation, via linearization, to a rotaional damper with equivalent linear

damping near an operating point will be discussed in future lectures.

Example: A Simplified Ship Propulsion System:

The power transmission system from the diesel engine to propeller for a

ship is shown in simplified form in Figure 4. The role of the fluid coupling

is to transmit the main flow of power from the engine to the propeller shaft

without allowing excessive vibration, which would otherwise be caused by

pulsations of engine torque resulting from the cyclic firing of its cylinders.

6



Figure 4: Schematic diagram of a simplified model of a ship propulsion system.

Figure 5: Diagram of a mass-spring-damper system in a gravity field.

The objective of this problem is to develop the equations for a math model

for this system that would enable one to relate the shaft torque TK(t) to the

inputs Te(t) and Tw(t).

The free-body diagram for this system is shown in Figure 5.

For the engine (including moving parts and flywheel lumped together into

an ideal inertia in which friction is ignored) we have

dΩ1g(t)

dt
= (

1

Je
)(Te(t)− Tc(t)). (17)

For the fluid coupling (with negligible inertia) we have

Tc(t) = Cc(Ω
2
1g(t)− Ω2

2g(t)). (18)

At the junction between the fluid coupling and drive shaft,

Tc(t) = TK(t). (19)

For the drive shaft (ideal spring with negligible friction and inertia)

dTK(t)

dt
= K(Ω2g(t)− Ω3g(t)). (20)
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Figure 6: Coefficient block diagram for constant and time-varying coefficients.

For the propeller (ideal inertia with negligible friction) we have

dΩ3g(t)

dt
= (

1

JP
)(TK(t)− Tw(t)). (21)

Equations (17) through (21) constitute a necessary and sufficient set of five

equations for this system containing five unknowns: Ω1g(t), Ω2g(t), Tc(t),

TK(t) and Ω3g(t). The three variables Ω1g(t), TK(t) and Ω3g(t) represent the

system states, with their dynamics described by equations (17), (20) and (21).

Equations (18) and (19) are static relations that can be used to eliminate the

two additional variables Ω2g(t) and Tc(t) in terms of the state variables.

Block Diagrams

One of the most useful forms of representing dynamic system models is

through block diagrams. Figures 6 through 8 show some of the most widely

used block diagram building blocks.

As an example let use develop the block diagram for the system shown in

Figure 9.

Applying Newton’s second law to the mass m yields

dv1g(t)

dt
=

1

m
(Fi(t)− kx1(t)− bv1g(t)). (22)

We can now write the velocity and displacement of the mass m as

v1g(t) =
∫ t

0−
(
dv1g(t)

dt
)dt + v1g(0

−), (23)
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Figure 7: Commonly used summation block diagrams.

Figure 8: Block diagrams for integration and differentiation.

Figure 9: Simple mass-spring-damper system.
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Figure 10: Block diagram of the simple mass-spring-damper system.

and

x1(t) =
∫ t

0−
(v1g(t))dt + x1(0

−). (24)

The appropriate block diagram for this problem is shown in Figure 10.

Reading Assignment

See separate file on textbook reading assignments depending on the text

edition you own. Read the examples Handout E.6 posted on the course web

page.
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