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In this paper, we provide experimental results in the
application of the results of [4]. Based on the theoretic
work in [4], we propose an estimator-based delay-
compensation algorithm to stabilize a networked con-
trol system ( NCS) with network-induced stochastic time
delays, data-packet losses, and out-of-order data-packet
transmissions. With the p-sampling-period delay upper
bound, the NCS can also accommodate up to p—1
successive packet losses. We also derive sufficient
conditions for the stability of the NCS. The feasibility
and effectiveness of the theoretic results of [4] are
verified experimentally using an NCS test bed incorp-
orating an open-loop unstable ball magnetic-levitation
(maglev) system we constructed.
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1. Introduction

A control system where sensors, actuators, and con-
trollers are interconnected over a communication net-
work is called an networked control system (NCS).
Randomly-varying time delays induced by the net-
work are well known to degrade the system stability
and performance [6]. The effect of time delays or
data-packet losses on the stability and performance
of control systems has been a subject of many studies.
Delchamps [2] investigated the issue of stabilizing a
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discrete-time linear system with quantized state feed-
back. The problem of state estimation and stabilization
of a linear-time-invariant (LTI) system with a finite-
bandwidth digital communication channel capacity
was introduced by Wong and Brockett [9]. In [8], the
stability of NCSs for a continuous-time plant and
controller was studied. The network resides only bet-
ween the plant and the controller. A study on stability
and performance of feedback control systems with
multiple time delays was reported in [1] considering the
roots of the closed-loop characteristic equation. In [3],
a robust state-predictive control strategy was proposed
for discrete-time multi-input/output systems with non-
equal delays on signal buses. The input and output
delays were taken into account in the control law
synthesis and a steady-state Kalman predictor design.
Zhang et al. [10] assumed that the full states were
transmitted through the network and that they might
be lost because of the dropped packets in the net-
work. On the other hand, the control command was
sent directly to the plant. With these assumptions, the
authors used the stability analysis for asynchron-
ous dynamical systems to find the maximum packet-
dropping rate under which the overall system is stable.
In [7], the stability of a linear NCS in the presence of
dropped packets was studied. Similar to [10], the con-
troller was directly connected to the plant, so there was
direct link between the controller and the plant. The
stability analysis in [7] was based on the stability of
Markov-jump linear systems. Almost all the above
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research focused on dealing with time delays or packet
losses separately. Network-induced time delays and
packet losses may occur simultaneously, thus a more
comprehensive compensation algorithm is needed that
can deal with the time delays and data-packet losses in
a unified way.

In [4], the control of a continuous-time linear
plant where the state sensor was connected to a lin-
ear controller/actuator via a network was addressed,
and necessary and sufficient conditions for stability
were derived for the presented setup in terms of the
update time / and the parameters of the plant. In this
paper, we experimentally verify the results in [4] using
our NCS test bed. We consider an NCS framework
as shown in Fig. 1. Two classes of time delays are
included in Fig. 1: (1) the delay 7 from the sensor to
the controller and (2) the delay 7, from the controller
to the actuator. We do not presume that this network
is exclusively dedicated to the NCS, so other types of
data traffic are allowed to use the same communica-
tion medium.

Based on the model of [4], we propose herein a
model-based estimation algorithm to compensate for
network-induced time delays and data-packet losses
in both the forward path and the feedback path.
A model estimator [4] is used at the controller node,
and it re-creates the plant dynamics for state estima-
tion in the forward path. The states are estimated mul-
tiple steps in advance with the model plant dynamics.
Control data are also estimated multiple steps in
advance based on these estimated states and sent to
the actuator node in one packet. The actuator node
selects a single appropriate control signal from this
packet in a given sampling time interval. By this way
and using an event-driven controller and estimator,
the plant receives a control input at each sampling
time interval, and network-induced data-packet losses
have no more adverse effect than network-induced
time delays. They both can be compensated for with
the same algorithm in a unified way.

In Section 2 we present the problem statement.
In Section 3 a control algorithm for time-delay and
packet-loss compensation is presented. Experimental

Plant |—>| Sensor |

Actuator

Fig. 1. An NCS framework with network-induced round-trip time
delays.
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results that verify the stabilization algorithm and the
stability conditions in [4] are presented in Section 4.

2. Problem Statement

In this paper, the following assumptions are made:

1. The sensor node and the actuator node are time-
driven, and the controller node is event-driven.

2. The upper bound of the total time delay is less than
p sampling intervals, and the number of consec-
utive packet losses is less than p —1 in both the
feedback path and the forward path.

2.1. Full-State-Feedback NCS Case

If all the states are measurable, the sensor mode can
send the full states through the network to update the
model estimator as shown in Fig. 2. Assume that the
sampling period is 7, then we have following differ-
ence equations:

Discrete-time plant model:

x(n+1) = Ax(n) + Bu(n)

y(n) = Cx(n) + Du(n) m
Model estimator:

%(n+ 1) = Az(n) + Bu(n

N <2>
Full-state-feedback controller:

u(n) = K(n) (3)
State-estimation error:

e(n) = x(n) — %(n), 1 € [ng ). 4)

We define a positive integer variable, N(k)=
ny 1 — N, where k is the index of events, 7 is the index
of sampling instants, and 7y is the index of event arrival

|Actuator |—>| Plant |—>| Sensor |

IModel Estimator

u

=

A

Controller

u

Fig. 2. Block diagram of a full-state-feedback NCS.
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instants. The “event” herein means that the sensor data
arrived at the controller node. Thus,

e(ng) = x(ng) — x(ng) = 0. (5)

In other words, the state error in the model estim-
ator is reset to 0 at the n,-th instant when the actual
sensor data are available.

The N(k) has the following components

N(k) = Nyan + N(k)delay’ (6)

where N, is the time required for the data trans-
mission from the sensor node to the model estimator,
and N(k)gelay 18 the time for other total delays, such as
preparing time, waiting time, and processing time at
the network nodes. The upper bound of N(k) is p by
Assumption 2.

2.2. Output-Feedback NCS Case

When it is impossible to directly measure all the plant
states, we may implement a state observer as shown in
Fig. 3 [4]. This observer sends the observed states to
the model estimator. Similarly, with the same dynamic
Eqs (1-3) for the observer,

f(n+1)=(A—LOX(n)+ [B— LD L] {”(”)],

where X(n) is the observer states, and L is the observer
gain. Define e(n) = x(n) — x(n), we have

&(n) = {)E(n) —x(n), ne (m,ng) ' ®)

0, n=nj

The above models are similar to the NCS models in
[4], in order to deal with the case where there are time
delays and data-packet losses in both the feedback path
and the forward path as shown in Fig. 1, we develop the
algorithms to compensate for these two classes of time
delays and data-packet losses simultaneously and then
the stability conditions proposed in [4] can be applied
to the NCS framework shown in Fig. 1.

| Actuator |—P| Plant |—>|Sensor |7>| Observer|
v

)

X

Controller Model Estimator

u

Fig. 3. Block diagram of an output-feedback NCS.

3. Compensation Algorithm for
Network-Induced Time Delays
and Data-Packet Losses

The delay 74 can be compensated for if we con-
sider the controller and the estimator as event-driven
devices. The estimator receives an updated state x(7;)
after N(k) sampling intervals. The remaining prob-
lem is how to compensate for the effect of delay 7., or
packet losses in the forward path to ensure the plant
receives a proper control data in every sampling
interval.

3.1. Compensation Algorithm for 7., and
Data-Packet-Loss Compensation

We use an estimator as proposed in [4] at the controller
node to estimate the plant states of the successive
samples p-step in advance. With these estimated states
the controller node calculates the control signals p-steps
ahead and then sends them in one packet to the actu-
ator node. If the new control signal packet does not
arrive in time, the actuator node uses estimated control
signals from the control signal packet that previously
arrived.
The p-step-ahead state estimation is done as

%(n+ 1) = Ax(n) + Bu(n)

®(n+2)=Ax(n+ 1)+ Ba(n+1)

) ©)
®(n+p)=Ax(n+p—1)+Ba(n+p—1).
The control signal packet is generated as
u(n) = Kx(n)
un+1)=Kx(n+1) (10)

an+p—1)=Kx(n+p—1).

The actuator node selects an appropriate single
control signal U(k) from the packet as below for the
next p-sampling intervals until the new updated con-
trol signal packet arrives.

u(n),
u(n+1),

nT<t<(n+1)T

Ul) = (n+)T<t<(n+2)T
u(n+p—1), (n+p—1HT<t<(n+p)T,

(11)

where U(k) denotes the actual control signal adopted
by the actuator; u(n), a(n+1), ...,and a(n +p — 1),
the components of the control signal packet at the



corresponding sampling time instant n; and ¢z, the
continuous time. Once the new control signal packet
arrives, Eq. (11) it is revised with the new control
signal components, and U(k + 1) is then available. An
actual real-time implementation of this control law is
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Fig. 5 is simply discarded. The most recently arrived
control packet is used.

On the other hand, for consecutive time delays, the
delayed packet is still useful. As shown in Fig. 6, the
delayed and used control signal wuz, in the second

U(k) = (1/4)(1 +sgn(t —nT))(1 —sgn(t — (n+ 1)T))u(n)
+ (1/4)(1 +sgn(t — (n+ D)T))(1 —sgn(t — (n+2)7))ia(n+ 1)
+ (1/4)(1 +sgn(t — (n+2)7))(1 —sgn(r — (n+ 3)7))u(n + 2) (12)

+ ...

+ (/41 +sgn(t = (n+p = 1)T))(1 —sgn(t = (n+p)T))u(n +p — 1),

1 x>0
-1 x<0°
time delays and packet losses with this algorithm is
elaborated in the following.

For example, with p =4, the adoptions of the con-
trol signals by the actuator node in each sampling
interval when packet losses occur are illustrated in
Fig. 4. The label y denotes the sensor data, u, the
control data, and 7, the sampling period. The labels
U+ denote the control law Eq. (12) implementation
at the actuator node. The subscripts of the labels y, u,
and T denote the indices of sampling intervals as n in
Eq. (1). The subscripts of the label U denote the
indices of events as k in Eq. (5). The subscript of the
label u also indicates whether it is estimated or not. If
no new control signal packet is available in any given
sampling interval, the most recently estimated control
signal and stored in the last available control signal
packet, like u,,, and u3, (in bold face) in Fig. 4 is used.

The adoptions of the control signals by the actuator
node in each sampling interval when non-consecutive
time delays occur are illustrated in Fig. 5. For non-
consecutive time delays, the delayed packet likes U, in

where sgn(x) = The compensation for
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Fig. 4. Example communication process with packet losses.

packet is more recent than the one in the first packet.
The control signal u4, in the third packet is more
recent than the one in the first packet or the second
packet. Thus the most recently estimated control
signal is used.

Plant Actuator & Controller &
(Test Bed) Sensor | y, [Estimator
T —>|
! PR U, m
'y — ., 3%}
T
Ts
T,
< ik
v v v

---------- » Packet delayed  — — =P Estimated control used

—& Packet discarded

Fig. 5. Example communication process with non-consecutive time
delays.
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Fig. 6. Example communication process with three consecutive
time delays.
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In the case of out-of-order transmission of packets,
the outdated packets are simply discarded. For ins-
tance, if the (n+ 1)-th control signal packet arrives
earlier than the n-th packet at the actuator node from
the controller node, the actuator node neglects the
n-th packet and uses the most recent (n+ 1)-th con-
trol signal packet. By this, our algorithm can deal with
out-of-order packet transmission as well. An example
of such communication process is shown in Fig. 7
where the outdated sensor data y, and the control
packet Us are discarded.

Fig. 8 shows an example communication process
that includes all the above situations. The labels in
bold face such as u,,, us,, and so on denote the estim-
ated control signals. The labels in unbold face such
as uj, us, and u7 denote the real control signals. In
Fig. 8, the numerical indices of the control signals
the plant receives is exactly the same as those of the

Plant Actuator & Controller &
(Test Bed) Sensor i [Estimator
—
T
! PR U (uy, sy, 13, )|
T
e H2 - Ul
T
’ e Y3 - - 21 I
T.
4 PR U, Ug, Use, Uges U7e)
B 3
v Usy v

— Packet discarded = — —» Estimated control used

sampling intervals, thus we can see that in every
sampling interval, the plant receives a proper control
signal that is either real or most recently estimated in
the previous sampling intervals. By this algorithm, the
effect of packet losses is no worse than that of time
delays. Thus this algorithm compensates for time
delays, packet losses, and out-of-order packet trans-
missions in a unified way.

3.2. Augmented System Equations

With the compensation algorithm developed above,
the plant can receive the control input u(n) = Kx(n) at
each time instant n. Thus we can develop following
augmented system equation to facilitate the stability-
conditions developed in [4].

Let A=A4-A, B=B-B, C=C-C,
D = D — D be the model error matrices.

1. For the full-state-feedback NCS shown in Fig. 2,
the augmented system equation is

and

x(n+1)| |A+BK —BK ||x(n) 13
e(n+1) A+BK A—BK||en) | (13)
| x(n) _|4+BK —-BK
then (13) can be rewritten as
zin+ 1) =Azi(n), n€ ng,ne). (14)

The system described by Eq. (14) with the initial

o . T .
Fig. 7. Example communication process with out-of-order packets conditions zg = [x(m9) 0]" has the following
arrivals. solution [4].
Controller & >
. p | oy gl
[Estimator (n, (142, (us, (us,
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Uze, % Uge,
Uz Uge," 6es s
$] .: u o 0.‘ U e e
Use) N se) ., V4 7) Se)
N 2 y / i Vs "
Actuator & 3 4 ¢ >
Sensor U ! Ul: f Ul: A : I U | "
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| | |
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—@ Packet discarded ~ *r=erree » Packet delayed
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Fig. 8. Example communication process with time delays, packet losses, and out-of-order packet arrivals altogether.
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i=0

2. For the output-feedback NCS shown in Fig. 3, the
augmented system equation is
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4. Experimental Results

To verify the effectiveness of the estimation algo-
rithm developed in [4] and the compensation method
mentioned in Section 3, we set up an NCS test bed of a
ball maglev system as shown in Fig. 9 [11]. The control

x(n+1) A BK —BK x(n)
¥(n+1)|=|LC A—LC+BK+LDK —BK—LDK | | %(n) |. (16)

e(n+1) LC LDK—LC A—LDK | |é(n)
Define objective is to levitate a steel ball at a predetermined
) 8K 8K steady-state equilibrium position with an electro-
M= |LC A—1C+ BK+LDK —BK- LDK|, magnet. It is an open-loop upstable system, and .the
LC LDK — LC A— LDK system stability will be lost if any control actuation
misses its deadline due to delayed or lost control data
x(n) packets. Thus this test bed is very suitable for the

and z,(n) = | X(n) |, then we have verification purpose.

é(n) For our ball maglev system, it is found the upper
bound of the network induced round trip time delay
4 1) = Moza(n), 1€ [moms). (17) is about five sampling periods. Thus we chose to

The system described by Eq. (17) with the initial
condition zg = [x(ng) X(ng) 0]" has the follow-
ing solution [4].

« (1001 [100

o) =N T |0 1 0]A" 0 10| |z
=0 \ |0 00 000

(18)

The sufficient conditions for the stability of full-
state-feedback and output-feedback NCSs proposed
in [4] can be used here as sufficient conditions for
Eqgs (15) and (18).

Sensor (A/D)
Actuator (D/A)

Client

Server
Controller

Network Interface

< Ethernet LAN >

Fig. 9. Block diagram of our NCS test bed.

Network Interface

0—0'

design a 4-step-ahead estimator, and the composi-
tion of a 56-byte-long Internet-protocol (IP) packet
transmitted from the server to the client as shown in
Fig. 10. It consists of a 20-byte-long IP header, an
8-byte-long user datagram protocol (UDP) header, an
8-byte-long time stamp, one current control signal,
and four estimated control signals.

In the first experiment, no compensation algorithm
was used. At r=10s, we forced a data packet to be
lost while transferred from the client to the server.
With the introduction of this data-packet loss, it was
expected that the system would become unstable. In
the response of the system shown in Fig. 11, the 0 value
after 1= 10s represents that the system indeed lost its
stability. The ball could not maintain its equilibrium
position and fell down.

In the second experiment, the estimator-based com-
pensation algorithm was implemented, and one packet
loss was introduced after every four successful data
transmissions (i.e, at s 20% packet-loss rate) from
t=10s onwards. As evident from the response shown
in Fig. 12, the system remained stable with degraded
performance, but the ball did not fall down from its
equilibrium position. In Fig. 12, we can observe some
hidden oscillations. In practical NCS applications,
asynchronous and aperiodic sampling often occurs
since the computer is time-shared or a part of a com-
puter network, or there are technical imperfections
in the instrumentation. However, asynchronous and



Stabilization of NCS with Delays and Packet Losses
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Fig. 10. Composition of a control-data packet from the controller to the actuator.
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Fig. 11. Ball position with a packet loss occurring at r=10s
without the compensation algorithm.
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Fig. 12. Ball position with 20% packet losses occurring from
t=10s onwards with the compensation algorithm.
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Fig. 13. Ball position with four successive packet losses occurring
every 6s from 7= 10s onwards with the compensation algorithm.

aperiodic sampling is sometimes preferred over syn-
chronous sampling when the former is applied inten-
tionally to eliminate hidden oscillations.

In the third experiment, the compensation algorithm
was implemented and four consecutive packet losses
were introduced every 6s from ¢t=10s onwards. The
response of the system is shown in Fig. 13. The system
maintained its stability successfully even in the event
of four successive packet losses, and the ball did not
fall down from its equilibrium position. The periodic
1.I-mm peak-to-peak spikes indicate the degraded
system performance due to the packet losses and
imperfect state estimation.

The above experimental results demonstrated that
the system stability in the presence of time delays
or packet losses could be maintained using the
estimator-based compensation algorithm developed
in Section 3.

5. Conclusions

In this paper, based on the model in [4], we proposed
an estimator-based delay-compensation algorithm to
stabilize an NCS in the presence of network-induced
time delays and data-packet losses. This model-based
estimation algorithm can deal with network-induced
stochastic time delays, data-packet losses, and out-of-
order packet transmissions in a unified way.

We incorporated a controllable and observable
maglev test bed that is open-loop unstable in our NCS
test setup. We provided experimental results in the
application of the results of [4], and the experimental
results demonstrated the feasibility and effectiveness
of this estimator-based compensation algorithm for
NCSs with stochastic time delays and successive pac-
ket losses. We could stabilize our open-loop-unstable
ball maglev system even with time delays up to five
sampling intervals and four consecutive packet losses,
or at an average packet-loss rate up to 20%.
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