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Nanoscale Dynamics, Stochastic Modeling, and Multivariable
Control of a Planar Magnetic Levitator

Won-jong Kim

Abstract: This paper presents a high-precision magnetically levitated (maglev) stage to meet
demanding motion specifications in the next-generation precision manufacturing and nanotech-
nology. Characterization of dynamic behaviors of such a motion stage is a crucial task. In this
paper, we address the issues related to the stochastic modeling of the stage including transfer
function identification, and noise/disturbance analysis and prediction. Provided are test results
on precision dynamics, such as fine settling, effect of optical table oscillation, and position rip-
ple. To deal with the dynamic coupling in the platen, we designed and implemented a multivari-
able linear quadratic regulator, and performed time-optimal control. We demonstrated how the
performance of the current maglev stage can be improved with these analyses and experimental
results. The maglev stage operates with positioning noise of 5 nm rms in x and y, acceleration
capabilities in excess of 2g(20 m/s°), and closed-loop crossover frequency of 100 Hz.

Keywords: Optimal control applications, system identification and estimation applications,
electric motor, modern actuating device, semiconductor manufacturing systems.

1. INTRODUCTION

We have developed a high-precision magnetically
levitated (maglev) stage for the next-generation precision
manufacturing and nanotechnology. This stage as shown
in Fig. 1 is the world's first maglev stage that provides
fine six-degree-of-freedom (6-DOF) motion controls,
and realizes large planar motions with only a single
maglev moving part, namely the platen. This stage is ca-
pable of providing all the motions required for a wafer
stepper in photolithography in semiconductor manufac-
turing; the platen is driven in all 6-DOF motions with
small adjustments for focusing and alignment and with
large planar motions for positioning across the lens field
of view. Its current design is optimized to suit for the mo-
tion requirement of such an application.

The wafer stepper is operated in step, expose, and re-
peat sequence to position the wafer under the lens for li-
thography [1,2]. The die sites on the wafer are exposed
by patterned ultraviolet light as defined by the mask. The
one-step distance depends on the dimension of the die
sites whose typical lateral dimension is on the order of 20
mm. As the time duration for moving the wafer from one
die site to another heavily affects the throughput, faster
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positioning speed is desirable. In steppers, a die site un-
der the lithographic lens is exposed while the wafer is at
a standstill. There are also advanced step-and-scan type
lithography tools where exposure occurs on the fly.
Therefore, precise position control is very important in
the current and future deep-submicron lithography tech-
nology. We thus have two important control objectives
for the levitator as prototype semiconductor manufactur-
ing equipment. (1) Maintain the position the platen as
fast as possible in the transition from one die-site to
another. Fig. 2 shows the overall control loop of the
stage.

Since only the platen generates all required motions
in the maglev stage, its dynamics is coupled in

Fig. 1. Photograph of a high-precision planar maglev
stage. The horizontal positions are measured at the
L-shaped mirror by laser interferometers. The ver-
tical positions are measured at the bottom of the
platen by capacitance sensors.
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Fig. 2. Overall control loop of the planar magnetic levitator. Three horizontal DOFs are inherently unstable at the
equilibrium, and need to be stabilized by active control. The motor forces acting on each magnet array are
shown as arrows. Two of motors (I and III) drive the platen in the x-direction, and the other two (II and
IV) in the y-direction. The motor forces are coordinated appropriately to control the remaining four de-

grees of freedom.

six DOFs. Thus, linear multivariable quadratic control
is a natural choice to regulate the position of the
platen. We designed and implemented a multivariable
linear quadratic regulator (LQR) for the lateral modes
(x, y and angle around the z-axis) of the maglev

stage. Full state feedback was provided by the laser
interferometer electronics (HP10897A) for this lateral
mode control. To apply the modern multivariable con-
trol, a state-space model of the platen dynamics is re-
quired. We used the analytical results given in the pre-
vious work to derive linearized equations of motion
[31].

The time-optimal control is an important motion
control problem where a fast response saves time and
operational cost. There are many research results on
the time-optimal control especially in path planning in
robotics [4, 5]. The same economical consideration is
also applicable for wafer handling applications in
semiconductor manufacturing, since faster movement
and settling increases the machine throughput. The
time-optimal control problem with actuator saturation
was solved and can be found in standard optimal con-
trol texts as [6]. We adapt this result and demonstrate
that the stage can generate very fast step motions.

In this paper, we report recent developments and
test results with the planar magnetic levitator. In the
following section, we present a brief overview of the
maglev stage. Stochastic transfer function identifica-
tion and noise analysis and prediction are described in
Section 3. In Section 4, we present fine settling per-
formance including effect of optical table oscillation
and position ripple. Section 5 presents the multivari-

able time-optimal control test results. The experimen-
tal data presented in Sections 4 and 5 verify the analy-
sis given in Section 3.

2. MAGLEY SYSTEM OVERVIEW

As shown in Fig. 2, the platen is levitated without
contact by four novel permanent-magnet linear motors
that provide both suspension (vertical) and drive
(horizontal) forces [3]. Combinations of the actuator
forces, rather than a single motor, generate a transla-
tional or rotational motion. With an orthogonal ar-
rangement of the motors as in Fig. 2, the platen gener-
ates all 6-DOF motions for focusing and alignment
and large two-dimensional step and scanning motions
for a high-precision positioner as a wafer stepper stage
in semiconductor manufacturing. We allocate three
lateral force or torque components to four lateral mo-
tor components by the following modal force trans-
formation. For example, we activate positive fi, and
f3x in Fig. 2 to get a motion in the positive x -
direction. If fi, and f3, are in opposite directions, we
get a rotational motion around the z-axis. To generate
a positive rotation around the x-axis, we put positive
fiz and f>: and negative f3; and fi.. Motions in the
three other degrees of freedom are generated in similar
ways.

The linear levitation motors consist of Halbach-type
magnet arrays [7] attached to the underside of the levi-
tated platen, and coil sets attached to the fixed ma-
chine platform. Since all the motor coils are fixed, no
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wires need to be connected to the moving part. The
platen mass of 5.6 kg is supported against gravity by
the combined forces of the four motors. Each motor
consumes about 5.4 W to lift the platen. The present
design has travel of 50 mm inxand y, travel of 400

um in z ,and is capable of several-milliradian rotations
about each of these three orthogonal axes. The maglev
stage operates with positioning noise of 5 nm rms
inx and y ,and demonstrates acceleration capabilities

now in excess of 2g (20 m/sz). The crossover fre-
quency of the control system is 100 Hz, and its phase
margin is 53°.

We have three laser axis electronics boards with
0.6-nm position resolution to measure translations and
linear velocities along the x- and y-axes and rotations

and angular velocities around the z-axis. Three capaci-
tance gap gauging systems provide vertical displace-
ment, and rotational angles around x- and y-axis. The
zero point of the capacitance gauging system is set at
a 450-um air gap and its sensing range is large enough
that the sensors never saturate when the platen sits on
the stators. The resolution of this gauging system is
7.8 nm. Control algorithms are implemented digitally
in a 320C40 digital signal processor board. A 100-
MHz 80486 PC takes care of user interface, such as
monitoring levitator states and command interpreta-
tion.

3. SYSTEM AND NOISE MODELING

In this section, we address the stochastic modeling
including transfer function identification, and noise/
disturbance analysis and prediction of the whole levi-
tation system.

3.1. System transfer function

To obtain fast dynamics through high-bandwidth
control, high system structural resonant frequency is
required for system stability. A stage with a single-
moving part like this planar magnetic levitator has ad-
vantages over counterparts with multiple moving parts
since its mechanical structure is simple and can be
made stiff. We constructed the platen in aluminum
honeycomb structure to achieve high stiffness-to-mass
ratio [2].

Fig. 3 shows a block diagram to obtain the transfer
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Fig. 3. Block diagram for a stochastic transfer function
identification.

function of the plant, the levitated platen. We apply a
stochastic system identification methodology that uses
as random disturbance force input. A detailed treat-
ment of the stochastic modeling is covered in classical
texts such as [8]. The random disturbance is generated
in software with the “rand()” function in the ANSI C
language. Since the maglev system is open-loop un-
stable, the magnitude of the random disturbance (5.0
N) was chosen after many iterations to excite the plant
persistently without losing stability [9].

The plant transfer function magnitude in x was ob-
tained as presented in Fig. 4. The frequency response
of the plant shows a main structural resonance at
about 750 Hz with no other significant resonance un-
der that frequency. Comparing with the resonant fre-
quency at 1.2 kHz of the honeycomb sandwich platen
only [2], the whole platen shows a lower resonant fre-
quency. This is mainly due to the added masses of the
four magnet arrays and the square mirror attached to
the platen. This high resonant frequency could be
achieved with the planar magnetic levitator because of
its simple mechanical structure, its low part count, and
the high stiffness-to-mass ratio

3.2. Noise/disturbance modeling and propagation

To determine contributions of each noise source in
the maglev system, we use the noise/disturbance
propagation model presented in Fig. 5. It shows how
noise and disturbance are injected to the closed-loop
control system including the controller and the plant.
The bandlimited noise 7, modeled as A/D converter
quantization and electronic noise enters the control
loop as contaminated position measurement. The
bandlimited disturbance W, modeled as floor vibra-
tion and D/A converter quantization enters as con-
taminated input force. In this section, we present the
analysis for the vertical motion z.
Since the vertical position is measured by capacitance
gauges through A/D converters, we read the sensor
and A/D converter noise as position fluctuation. The
position error covariance of the A/D converter and
electronic noise of the planar magnetic levitator is
measured as follows with all analog input terminals
electrically short so that there is no stage mechanical
movement involved in it.

O b e = 61.2 nm?/(rad/sample). (1)

The error covariance of the A/D converter quantiza-
tion can be calculated assuming the real data has a
uniform distribution within the quantization interval
A. For the 16-bit A/D converters we use and with the
500-um maximum sensing range of the capacitance
gauges, A is 500 pm/2'®. Thus,

2 A

O4D quant =15 = 4.85 nm*/(rad/sample).  (2)
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Fig. 4. Measured plant transfer function magnitude in x.

The noises are assumed bandlimited at 800 Hz, the
breakpoint frequency of the anti-aliasing filters in
front of the A/D converters.

The force error covariance due to D/A quantization
can be calculated similarly. Since the full swing of a
phase current of the power amplifier is 3 A and the
D/A converter is of 12-bit resolution, the current
quantization is 3 A/2'2 = 7.32 x 10* A. Using the
force constant of the levitation motor, 27.7 N/A, and
A =277x(732x 10N,

2
o quant :% =3.43x107° N?/(rad/sample).  (3)
The disturbance covariance of the floor vibration-
measured on top of the optical table is measured to be

6.65x107° N*/(rad/sample) [10].

Using the error covariances derived above, we can
determine the contributions of each noise/disturbance
source represented as positioning noise using a Matlab
function “covar().” In Fig. 6, the current maglev stage
shows a total of 215 nm” noise covariance, with all
noise/disturbance contributions converted to equiva-
lent continuous spectral densities for fair comparison.

3.3. Noise prediction with better metrology and vibra-
tion specifications

In this subsection, we predict the positioning noise in
case better metrology and vibration specifications are
available. One of the fundamental limitations of the per-
formance of the current planar magnetic levitator is the
noise in the capacitance gauge analog electronics. If we
could replace the analog capacitance gauge system with
laser interferometry with resolution A=0.15 nm,

A2

ol = D =1.88x107 nm’ /(rad/sample).  (4)
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Fig. 5. Stochastic noise/disturbance propagation model.

We see the noise error covariance can be much im-
proved with high-resolution laser interferometry.

On the other hand, the floor vibration contributes
significantly to the overall noise covariance. Rejection
of seismic floor vibration can be done by active vibra-
tion isolation with feedback controllers. In essence,
the noise covariance of the current system could be
decreased to 1.46 nmz, which is less than 1% of the
current value, if we employed a 0.15-nm resolution
laser interferometry instead of the capacitance gauge
system, 16-bit instead of 12-bit D/A resolution, and
100 times better effective floor vibration rejection. So,
nanometer-order positioning noise for the maglev
stage is achievable with adequate metrology and envi-
ronment control. This noise analysis and prediction is
summarized in Fig. 6.

4. PRECISION DYNAMICS

The ultimate goal of the planar magnetic levitator is to
position the platen quickly and accurately against dis-
turbance motions and forces, and measurement noise.
In this section, observed precision dynamics of the
planar magnetic levitator including unmodeled optical
table oscillation and its interaction with the levitator
dynamics, and position ripple due to nonideality in the
levitation motors are presented.

4.1. Fine settling

To demonstrate our stage's motion capability, we
accelerate the platen at 1g(10 m/s%) until its velocity

reaches the maximum slew rate of 200 mm/s of the
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Fig. 6. Noise contributions in the present planar mag-
netic levitator and their prediction in an im-
proved system with better metrology and vi-
bration specifications.
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laser head we use. The platen moves at this constant
velocity for 80 ms and is decelerated at 1g. This mo-
tion trajectory is typically referred to as a trapezoidal
velocity profile. So, a 20-mm step command com-
pletes in 120 ms. The present lead-lag controllers need
roughly 250 ms more to bring the errors in all six axes
within their steady-state positioning noise level. This
settling time can be reduced by implementing the con-
trol design. This can be done by: (1) Move the domi-
nant closed-loop pole more deeply into the left-half s-
plane by sacrificing phase margin by moving the lag
zero to the left in the s-plane. (2) Increase the whole
closed-loop system bandwidth, which is limited by
system structural resonance.

4.2. Optical table oscillation

Fig. 7 shows a 40-mm step response in x. The initial
and final acceleration of the stage is set at 1/5g (2
m/s’) and the maximum velocity at 200 mm/s. The
platen reaches the final positions in 300 ms as com-
manded. We also present in Fig. 7 the final position
error of the same step response on a finer scale. We
observe a persistent, low-frequency (about 1.5 Hz),
well-damped vibration in the experimental data. This
is due to the reaction oscillation of the optical table on
which the planar magnetic levitator is mounted after
completing the 40-mm step trajectory. This low-
frequency oscillation is a genuine problem in any po-
sitioning system, whether based on magnetic levita-
tion or an alternative technology, that requires fast re-
sponses and high acceleration capabilities. It can be
reduced with careful trajectory planning (with an S-
shaped velocity profile, for instance) to avoid any
abrupt change in acceleration (jerk). Both an enhanced
damping at the resonant frequency of the optical table
and a high-mass vibration isolator will reduce the
magnitude of this oscillation. For a more tight nano-
meter-order position window, it is recommended to
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Fig. 7. 40-mm step in x (top) and its final position error on
a finer scale (bottom) to show the effect of optical
table oscillation.

use an active vibration isolation system that reduces
the oscillatory motions and rejects the floor vibration
at the same time.

4.3. Position ripple

Only the fundamental magnetic field components
are usually taken into consideration to derive motor
forces and commutation laws [2]. Since it is impossi-
ble to implement perfect sinusoidal magnetic field
sources in practice, there will be higher-order force
components, so-called force ripple. This force ripple is
different from cogging force which is prominent in
slotted motors or variable reluctance motors, and is
much smaller in magnitude. Similar, but bigger in
magnitude, periodic error is also unavoidable in con-
ventional lead screw systems due to the mechanical
error of the screw and balls. These error motions can
be reduced by open-loop correction. The present
maglev system shows +100-nm order position ripple
inz(i.e., the vertical displacement) during a com-
manded constant-velocity scanning motion at —20-
mm/s in the x-direction without any correction (Fig. 8).
This deterministic error motion due to force ripple can
be reduced by feedforward correction [2]. Fig. 8 also
shows other axes’ dynamic behaviors during the con-
stant-velocity scanning motion for a reference. Rea-
sons for the small position fluctuations in yand  (ro-
tation around the x-axis) may include fabrication er-
rors, especially the straightness and alignment error of
magnet arrays and stator windings. In a point-to-

[mm
o o &
/. {
w igrad]
L o e w
g
=

2 0% 1 LR 2 o (-2 L 15 z

il
=2
. g
%
& (prad)
w o e -
o B
- —
—
=
=
=

mmi

ﬁz-ir-%?:nx:é:é
o

1”' l.r’ “1“'1
i

-
0.5 ﬂ

1 1

i H H . KT}

o5 ; 15 2 o o5 1 15
1 (%] i
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point positioning application as in a stepper, this force
ripple has an insignificant effect on the overall system
performance. There is no such sinusoidal force ripple
when the platen moves in the vertical direction since
the vertical force depends on an exponential function
of z. If the planar maglev stage had 6 phases instead
of 3 phases, the ripple force would have been only 2%
of the present ripple force [2].

5. MULTIVARIABLE TIME-OPTIMAL
CONTROL

Since only the platen generates all required motions,
its dynamics is coupled in all six DOFs. In order to
understand observed dynamic behaviors and develop
high-performance controllers, precise dynamic model-
ing is required. However, a previous decoupled model
does not address dynamic coupling between the axes.
Thus, a multivariable linear quadratic controller is a
natural choice to regulate the position of the platen.
We design a linear quadratic regulator (LQR) for the
lateral modes(x, y and angle around the z-axis) of the
magnetic levitation stage in this section. We do not
need to differentiate position data or build a state es-
timator for velocity feedback, as full state feedback is
provided by the laser interferometer electronics
(HP10897A) for the lateral mode control. To apply the
multivariable control, a state-space model of the
platen dynamics is required. We use the analytical re-
sults given in the previous work [3] to derive lin-
earized equations of motion.

The relationship between the force components and
the direct-quadrature (dp) current components is
shown as [3, 11, 12].

{ﬁ} = L oMo N Ge {{Q}' (5)
fz 2 D

For our levitator, magnet remanence, oMo =1.29 T;

winding turn density, 7o =2.49x10° turns/m’; effec-
tive spatial period N, =15/4; motor geometric con-
stant G=4.90x10"° m3; pitch /=25.6 mm; and ab-
solute value of fundamental wave number
n=2r/l=245m".

The above equations have a nonlinear coupling
term of vertical position, zoand currentsipandip. To
linearize these force equations, we set the perturbation
equations, z=z+%, ip=ip+ip, and ip=ip+ip, where
zo is the nominal levitation height, which is set 250
um for the levitator. Ignoring the mass unbalance due
to the mirror, the nominal direct-component current
ip is calculated 500 mA to levitate the platen. Then,
each of four motors generates 14 N as suspension
forces, supporting approximately a quarter of the

platen weight. The nominal quadrature-component
current Jp is zero, as the platen is in dynamic equilib-
rium and nominal £, is zero.

Let fi, f2, f3 and f4 be the force vectors acting on

four magnet arrays I, II, III, and IV in Fig. 2. Since
each magnet-stator pair generates driving and levita-
tion forces, we set

Si = fixix + fiziz, (6)
o = foyiy + fosiz, (7)
S5 = faxix + faziz, ®)
Ja = Jayiy + faziz, )

where iy , i, and i; are the unit vectors.

Now, we define the displacement vectors from the
center of mass of the platen to the centers of mass of

each of four magnet arrays as R =[X; Y% Z],
R=[X2 Y» Z], R=[X3 Y3 Z] and Ry=
[Xs Yy Z4]". The values of the geometric parame-
ters are X1=Xa=¥3=Y4=-1128 mm, X,=X3
=¥ =Y%=904 mm, and Z1=2Z,=273=7Z4=-33.4

mm in our levitator. We approximate the forces to act
on the centers of the magnet arrays.

5.1. Linearized equations of motion
We follow the x y z convention to define Euler an-

gles, which is commonly used in engineering applica-
tions [13]. For small angular motions in our levitator,
the Euler angles i , 8 ,and ¢ can be considered as rota-

tional angles around x-, y-, and z-axes, respectively.

We define twelve state variables to describe motions
of the platen

[xyzuth//49¢pqr]T. (10)

The first six states are the position and velocity com-
ponents of the center of the mass of the platen with
respect to the origin of the inertial frame described in
the inertial frame. The seventh, eighth, and ninth
states are Euler angles. The last three states are the
angular velocity components of the platen described in
the body frame. We can show that the angular velocity
components described in the inertial frame are ap-
proximately the same as those described in the body
frame in case of small-angle linearized equations of
motion.

Let us define k= % toMonoN,Ge ™. Using the
linearization equations for forces
fr =kpipX+kpig (11)
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fy =kpipy +kpig , (12)
j7z =—kpy153fc+kpz7g, (13)

and the perturbation equations, the full state equations
for small linear and angular position variations around
the equilibrium point for the levitator can be shown by
applying Newton's second law.

=i, (14)

y=v, (15)

Z=w, (16)

i =~k (7 + B )F+ —— ki (g + B0) (17)
M D\UD + BD M D\1Q T BQ),

<
Il

P
ﬁkD(iZD+'MD)y+ﬁkD(12Q+’4Q)7 (18)

~ l - - - - ~
w= —HkDyl(llD +bp+Bp+ip)z

(19)
+LkD(ED +hp+Bp +ip)
M b
w=p (20)
0=3q 1)
b7 22)
j;:
G=...

=12 kp (~Yyip —Yiybp +Z3bp

~Yinbp — Y up + Zup)f
+15'kp(ZEip — XEyip — X3ybp +Z36p
~X3nBp + X; D )6
+12kp (Y ip + X3bp + Y 6p + X2 D )d (23)
+kp(I5' 21 — 12 H)ig +kp (—12 Z2 + 12 X))o
+hkp (I Z3 — 12 V3)iag + kp (~ 12 Za + I Y3 )iao
+kp (I Y =I5/ X1)iip +kp (I Y2 = 15/ X2)iop
+hp (125 — 15 X3)i3p + kp (I Ya — I Xa Yiap.

The expressions for pand g are similar to the expres-

sion for# and are omitted for the sake of brevity. The
inertia tensor is represented by a 3x3 matrix

[ Ixx _Ixy _[xz
I=|-Ix I, -~
_sz _Izy Izz
- (24)
0.0541  0.00276 —0.00253
=| 0.00276  0.0541 -0.00261
| —0.00253 -0.00261  0.0981

in kg-m”. This completes the derivation of the state-
space equations of motion of the stage.
If we neglect coupling terms between the vertical

and horizontal modes, the linearized small-signal lat-
eral mode dynamics can be represented as follows by
substituting parameters given above [2].

I roo 0 0 10 0][%]
y 0 0 0 01 0|»
é 0 0 0 00 1|4
s 149672 0 0 00 0|a
: 0 49672 0 0 0 0|7
S Lo 0 58440 0 0 0J|7]
0 0 0 0 |

0 0 0 0 o

0 0 0 0 | ho

4.9672 0 49672 0 |

0 49672 0 49672 | i
|—26.0235 26.0092 314955 —31.5107

(25)

The open-loop poles are at +2.2287, +2.2287 and
+2.4174 rad/s. The plant model for the lateral mode is
unstable, and the instability comes from the negative
springs from the electromagnetic origin.

5.2. Linear quadratic regulation for lateral modes
We represent the above dynamic system as follows.

(1) = Ax(t) + Bu(t) (26)

where x is the state vector and u is the input vector.
Define the performance index

V()0 1) = [ @ ORu@)+x 00x(0) dr. 27)

The time-invariant infinite-time regulator problem is a

minimization problem to find an optimal controlu” to
minimize V. The solution of this problem is well-known
and can be found in texts on optimal control such as [6].
As minimizing the errors in the position state variables is
one of the most important control objectives, much
greater penalties were assigned for these variables. On
the other hand, the same amount of penalties was as-
signed for each of the inputs. We found an optimal con-
troller associated with the performance index defined
above using Q= diag(10000 10000 10000 10 10 10)

and R=diag(111),

The corresponding closed-loop system
x(1)=(A-BR'BTP)x(t) is

The closed-loop poles are placed at =179.92, =32.12,
-21.84 £ j15.01, and -21.78 £ j15.00 rad/s, so the

closed-loop system has been stabilized. As the con-
troller is to be implemented digitally in a 320C40
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EIR 0 0 1 0 0 s
y 0 0 0 0 1 0 7
gl | 0 0 0 0 0 1 ¢
i | -701.23 12623 —41.961 —43.633 —0.051255 -1.3918 ||
0y -1.2623 -701.22 42.188 —0.051255 43.632 1.3993 || v
7| | —41.948 42175 -5777.8 -1.3905 1.3980 -212.01 || 7 |
=
i i 74.0904 -2.8995 -45.6450 4.5886 —0.1925 -1.6894| y
ho | —2.8833 74.1054 45.6230 -0.1914 4.5897  1.6887 ¢3 (29)
Bo | 68.0698 3.1536  54.0928  4.1955 0.2028  1.9696 || i
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Fig. 9. Position regulation with a linear quadratic regula-
tor for the lateral dynamics.

digital signal processor, we need the control gain in
the discrete-time domain. The discrete-time feedback
gain is calculated with the ‘lqrd’ function in MAT-
LAB. The ‘lqrd’ function discretizes the continuous
plant and continuous cost function weighting matrices
using the sample time and the zero order hold ap-
proximation [14]. The sampling of the controller is 5
kHz. Fig. 9 shows the lateral position regulation re-
sults by the linear quadratic rate rate regulator de-
signed above. The position noise in the x and y axes is
with a 40-nm envelope. The position noise in ¢ is 0.15

prad.

5.3. Time-optimal control

In the previous section, we discussed the design and
implementation of an LQ regulator to regulate the po-
sition of the platen. Besides the position regulation,
fast motion generation is another important control
objective to enhance the machine throughput as semi-
conductor manufacturing equipment. We formulate a
time-optimal control problem without penalty in the
control efforts as follows.

cal system under the influence of disturbance and
noise, chattering is a significant problem especially at
the end of the trajectory. This problem was solved
with dual mode of sliding mode control [6] or proxi-
mate time optimal control [15].

Many practical systems frequently have limitations
on the amount of control effort. Taking our levitation
system for example, we designed the maximum phase
current of the linear motors as 1.5 A. In many real sys-
tems, however, there are other constraints along with
this actuator constraint. In high-precision motion con-
trol system as ours employing laser interferometer
system, the laser head slew rate constraint proves to
be much more binding constraints. The laser head
(HP5517B) has the maximum velocity rating at 254
mm/s for a plane mirror measurement system. If we
accelerate the platen at 12.5 m/s, it takes only 20-ms
to reach 250 mm/s velocity at thls acceleration and the
displacement is 5 mm at = 20 ms. We could use the
bang-bang control for 20-mm steps, but the velocity of
the platen would be out of range because of the slew
rate constraint of the laser head.

For the fastest motion control, we accelerate the
platen at the highest acceleration possible until the ve-
locity reaches the slew rate, then decelerate the platen
at the same acceleration to brake the platen motion.
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Fig. 10 shows test results with repetitive 20-mm steps
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Fig. 10. 20-mm repetitive steps in p following the
time-optimal path.

in y direction. The acceleration given to the platen is
20 m/s’ (about 2- g) and the platen maintains 200-

mm/s velocity in the middle sections of the contour. It
takes only 110 ms to complete a 20-mm step. This fast
response confirms the utility of the magnetic levitation
technology in fast high-precision active motion con-
trol applications.

Testing results also show small perturbed motions
in z and ¢. However, they guarantee that there is no

collision between the platen and the stators at any in-
stance of time since the zero point for z of the platen is
set at 450-um air gap. The error motions in the other
axes depict the coupling nature of the platen dynamics.
We could not operate the platen at the maximum ve-
locity rating (254 mm/s) due to the velocity ringing at
the beginning and the end of the step motions.

6. CONCLUSIONS

In this paper, we presented the recent theoretical
and experimental developments in the planar magnetic
levitator. Using a stochastic system identification
methodology, the first resonant frequency of the platen
was shown as high as 750 Hz. This confirmed the ef-
fectiveness of the aluminum honeycomb composite
structure for its high stiffness-to-mass ratio. This high
structural resonant frequency enabled us to implement
a controller with a 100-Hz crossover frequency. This
high-bandwidth controller led to fast platen dynamics;
the platen now follows a 20-mm step command in 110
ms, and possesses 2-g acceleration (20 m/s’) capability.
With noise/disturbance modeling and analysis, we
have shown that the positioning noise covariance of
the current maglev system can be decreased by more-
han a factor of 100 with better metrology and envi-
ronment control.

Adequate metrology is essential to improve the cur-

rent planar magnetic levitator’s performance. Position
resolution and positioning noise can be enhanced by
multi-axis high-resolution laser interferometry with
multiple-path optics. Error corrections such as surface
mapping of mirrors, and corrections of wave length
variation due to temperature, humidity, and air density
are also required. Along with metrology, the operation
environment becomes significant for next-generation
precision instrument/manufacturing equipment. First,
since the dimensional stability of the metrology de-
vices is very sensitive to the temperature variation,
maintaining the operational temperature within tens of
milli-Kelvin will be required. Second, the vibration
isolation system should be optimized to provide ade-
quate damping and stiffness as well as low floor-
vibration transmissibility. To facilitate settling of the
stage in a tight nanometer position window, an active
vibration isolation system can damp table motions due
to reaction forces besides rejecting floor vibration.

Since the single-moving platen generates all 6-DOF
motions, and its dynamics is coupled among its axes,
multivariable modeling and control is required to rep-
resent the planar magnetic levitator dynamics with fi-
delity. To regulate the positioning error, we designed
and implemented a multivariable linear quadratic
regulator for lateral dynamics of the magnetic levitator.
The design was based on the analytical work pub-
lished previously by the author [3]. The x- and y-
positioning noise of the lateral modes is on the order
of 40-nm. This regulator stabilizes the inherently un-
stable lateral modes of the levitator and has a good
stability margin.

We also provided test results on the time-optimal
control of the maglev stage. Fast responses and effec-
tive command tracking are very important in semi-
conductor manufacturing applications, since they are
directly related to the machine throughput. The mag-
netic levitator's dynamic performance is limited by the
finite slew rate of the laser head. We modified the re-
sult in time-optimal control, and demonstrated that the
stage could complete a 20-mm step only in 110 ms at
maximum 2g acceleration. Perturbed motions in other
axes were maintained within reasonable bounds for
safe operation.

Magnetic levitation is an enabling technology in the
high-precision active planar motion control field. In
the future deep-submicron technology, fast and precise
motion control of material handling equipment is
highly required. We demonstrated the utility of the
maglev technology in high-precision planar position-
ing applications.
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