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Time-Domain Fixed-Structure Closed-Loop Model Identification of an 

Unstable Multivariable Maglev Nanopositioning System 
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Abstract: This paper presents improved empirical representations of a general class of open-loop 

unstable systems using closed-loop system identification. A multi-axis magnetic-levitation (maglev) 

nanopositioning system with an extended translational travel range is used as a test model to verify 

the closed-loop system-identification method presented in this paper. A closed-loop identification 

technique employing a known controller structure is used for model identification and validation. 

Direct and coupling transfer functions (TFs) are then derived from the experimental input-output 

time sequences and the knowledge of controller dynamics. A persistently excited signal with a 

bandwidth in the frequency range of interest is used as a reference input. An order-reduction algo-

rithm is developed to obtain TFs with predefined orders, which gives the closest match in the fre-

quency range of interest without missing any significant plant dynamics. The entire analysis is per-

formed in the discrete-time domain in order to avoid any errors due to continuous-to-discrete-time 

conversion and vice versa. Continuous-time TFs are used only for order-reduction and performance 

analysis of the identified TFs. Experimental results are presented in the time as well as frequency 

domains to verify the accuracy of the identified plant TFs. These results also demonstrate the effec-

tiveness of the developed closed-loop identification method in meeting all of the three core objec-

tives—(i) reduction in cross-axial coupling from 9.213 µm to 0.911 µm in translation and from 

22.03 µrad to 1.353 µrad in rotation, (ii) large range motion capability with a travel range of ±2.9 

mm, and (iii) improved robust stability. 

 

Keywords: Closed-loop model identification and validation, magnetic levitation, nanopositioning, 

order-reduction. 

 

1. INTRODUCTION 

 

Recent developments in the micro- and nanoelec-

tromechanical systems such as precision positioners call 

for accurate and reliable means of modeling for precise 

control and manipulation. Some of the major technical 

challenges that set apart these nanoprecision systems 

from their macroscale counterparts are added device 

complexities, nonlinearities and uncertainties present in 

the system that are hard to detect with conventional 

methods. An example of significance in this context is 

the identification and closed-loop control of a maglev 

system due to its open-loop-unstable dynamics [1]. 

Following are a few of the major limitations with 

precision control of this maglev system. 

1) It generates all the six-axis motions with a single 

levitated platen. This results in inherent coupling 

among the axes and thus limits the actual travel range 

otherwise attainable due to its mechanical design. 

This problem is more prominent in the extended-

range maglev stage since it allows large travel ranges 

and consequently more coupling. 

2) One of the control objectives of a maglev system is 

to have a working space as large as the designed 

travel range, which implies that the performance of 

the positioner must be uniform throughout the entire 

working space. However, the linearized plant model 

obtained about a specific operating point no longer 

remains valid and actuator nonlinearities come into 

play as the deviation of the plant state vector from 

the operating point increases [1]. 

3) The rotational sensing range of the laser interferome-

ters being used for the horizontal motion sensing is 

limited to 3.5 mrad. Thus, the cross-talk among the 

axes may also be responsible for system instability 

due to loss of sensing data in addition to producing 

undesired motions. 

4) The analytical model cannot capture the effect of 

uncertainties, and unmodeled dynamics due to fabri-

cation and assembly imperfections, and actuator 

nonlinearities. Modeling these uncertainties analy-
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tically can be complicated without perfectly knowing 

the amount and nature of the imperfections. 

 

These limitations combined with the added design 

complexity and subnanometer precision requirements 

call for the development of a modeling technique that is 

capable of providing better and more accurate plant and 

cross-coupling models compared to the models obtained 

by analytical methods with several restrictive 

assumptions. Accordingly, the main objective of the 

work presented in this paper is to provide appropriate 

modifications to the existing model identification and 

validation methods which often fail to address the 

practical problems with the underlying assumptions. It is 

also intended to provide experimental verification of the 

proposed modifications to demonstrate their use on 

unstable multi-axis maglev systems to be used as 

precision positioners. 

Model identification is necessary in order to analyze 

and model the plant dynamics accurately and to 

subsequently develop effective, reliable, and repeatable 

control strategies. It is also required to reduce the effect 

of unmodeled dynamics and nonlinearity in the actuators 

which may be difficult to model precisely using 

analytical methods. In the case of a maglev system, this 

is crucial as well as challenging because of the inherently 

unstable nature of magnetic levitation [2]. Thus, the 

system identification needs to be performed in closed 

loop. Furthermore, due to nonlinearities of the actuators, 

the linear plant model and controller cannot be used for 

extended travel range, as the actual force input computed 

by the controllers based on the larger gaps between the 

magnet and the coil will be larger than needed and will 

destabilize the positioner. Therefore, model identification 

needs to be performed on a small travel range. However, 

in this case, identification will not capture the nonlinear 

characteristics of the actuators. An alternative is to use 

feedback linearization to make the closed-loop system 

‘virtually linear’ and then perform the identification on 

the extended travel range. This method too will not 

capture the true actuator behavior since we will be 

deliberately canceling it through feedback linearization. 

To handle this problem, we will perform the 

identification in two steps. In the first step, we will use 

the feedback linearization together with the linear 

analytical plant model assumption to stabilize the closed- 

loop system [1]. Secondly, we perform closed-loop 

system identification for small-range motion. Finally, we 

use the identified plant and coupling TF models to design 

the controllers and retain the use of feedback 

linearization in hardware-in-the-loop implementation of 

the controllers for extended-travel-range motion. 

Closed-loop model identification has been of 

particular interest in this context in recent years [3,4]. It 

is essentially required when a plant is unstable and needs 

to be stabilized by a feedback controller [5]. There are a 

few results reported in literature on closed-loop 

identification. Kuo et al. [6] used system identification to 

validate their proposed mathematical model as well as 

parameter variations due to changing air gaps for the 

ultra-precision motion control of a magnetic-suspension 

stage. Dejima et al. [7] used step responses with a 

proportional-integral-derivative (PID) control in order to 

identify the parameters of the plant TF. Villota and 

Jayasuriya [8] constructed additive uncertainty models 

by using a zero-mean white-noise random signal as a 

reference input for system modeling. Lin and Jou [9] 

developed an improved force-model-identification 

method for magnetic suspension systems to establish 

reliable parameters to describe the nonlinear current-to-

distance characteristics of the magnetic field. Nakashima 

et al. [10] identified the vibration characteristics of a 

three-input/output maglev system using closed-loop 

identification, and designed an H∞ servo controller which 

can effectively suppress these vibrations. A direct 

closed-loop identification method using the plant 

input/output data acquired through an output inter-

sampling scheme was presented, and its effectiveness 

was demonstrated through an experimental study using a 

magnetic-suspension system by Sun et al. [4]. 

As discussed above, a rich prior art is available on a 

variety of identification methods for different scenarios, 

some of which are specifically designed for closed-loop 

system identification. Even though these identification 

techniques are discussed in elaborate mathematical 

details, hardly any attention has ever been given in most 

of the literature on their use in any of the practical 

applications. Most of the publications are limited to the 

development of analytical proofs and simulation results 

at the most. Forsell and Ljung [11], for instance, 

provided mathematical proof of uniform stability of 

potentially an open-loop unstable system among others 

in a closed-loop identification set-up. Likewise, Van den 

Hof and Schrama [12] revisited identification methods 

with particular emphasis on closed-loop identification in 

elaborate mathematical details. While these methods are 

expected to work perfectly well on any physical system, 

practical problems often violating one or more of the 

underlying assumptions, make them susceptible to failure 

and hence of limited use for practical purposes. 

Accordingly, the core objective of this paper is to 

develop an identification method with emphasis on its 

practical use. 

This paper is organized as follows. Section 2 briefly 

describes the analytical TF model for the maglev 

positioner. Methods adapted for the model identification 

and validation will be discussed in Section 3, followed 

by the detailed algorithm for closed-loop identification. 

A derivation of the plant and coupling TFs from the 

identified closed-loop TFs and controller TFs will also 

be discussed. An order-reduction algorithm will be 

subsequently presented to get fixed-order TFs in all axes. 

The identified plant and coupling TFs will be listed and 

compared to their respective analytical counterparts to 

demonstrate a close match in the frequency range of 

interest. Model validation will follow to prove the 

accuracy of the identified TFs and validate the 

identification algorithm in the time domain. Important 

findings in and the significance of this work will finally 

be summarized in Section 4. 
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2. ANALYTICAL METHOD 

 

The primary focus of this paper is to present an 

identification method to estimate the plant parameters of 

a multivariable open-loop unstable system. Its parameter 

estimation cannot be performed by using traditional 

input-output time sequences. Accordingly, the first step 

is to stabilize the plant in closed loop. In order to 

demonstrate this, we use a six-degrees-of-freedom 

(DOF) maglev nanopositioner with open-loop instability, 

shown in Fig. 1, as a test model. This positioner is based 

on a novel actuation scheme and is capable of generating 

all the six-axis motions using minimum number of 

actuators and sensors. It utilizes a light-weight single-

moving platen for positioning with a very simple and 

compact structure, which gives it an edge over most of 

the prevailing nanopositioning technologies and allows it 

to be used as a cluster tool for a variety of applications. 

Some of these applications are nanoscale lithography, 

patterning, fabrication, manipulation, and scanning. The 

maglev positioner operates with a repeatable position 

resolution of better than 3 nm at the control bandwidth of 

110 Hz. It can carry a payload of as much as 0.3 kg and 

retain the regulated position under abruptly and 

continuously varying load conditions. 

An approximate linearized plant model using 

analytical method for this system was presented in [13]. 

To apply the multivariable control, a state-space model 

of the platen dynamics is required. The plant model was 

derived using the Newtonian method with the Euler 

angles. The full equations of motion are nonlinear 

because of the dependence of motion of the platen on the 

trigonometric functions of the angles of rotation with 

respect to the inertial frame. These equations for lateral 

motion of the platen are given by [13] 
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The linearized plant model equation in the state-space 

matrix form for optimal multiple-input-multiple-output 
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φ ,� x,
�� y,�� ]φ

��  is given by 

2

2

2

1
0 0

( ) ( )
1

( ) 0 0 ( ) .

( ) ( )
1

0 0

x

y

zz

ms
X s F s

Y s F s

ms
s T s

I s

φ

 
 

   
   

=    
   Φ     

 
  

� �

� �

� �

 (7) 

The general form of this dynamic model with the 

inclusion of cross-axial coupling TFs and output noises 

may be represented as 
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where ( ),X s� ( ),Y s�  and ( )sΦ�  are the Laplace 

transforms of the perturbations of the horizontal 

positions and the yaw angle from their respective 

operating points; ( ),
x

F s� ( ),
y

F s�  and ( )T sφ
�  are the 

respective plant inputs as forces and torque; Ex(s), Ey(s), 

and ( )E sφ  and are the output noises; and G(s) and H(s) 

are plant and noise TFs, respectively. The axis 

convention and assembly of the maglev positioner is 

shown in Fig. 1. The force transformation between the 

modal forces [ ],
x y
f f φτ, ,  and the actuator forces 

1 2 3
[ ]F F F, ,  is given by 
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where l is the distance between the point of application 

of the actuator forces and the center of the maglev 

moving platen. Since the platen is suspended without any 

 

 

Fig. 1. Axis convention and assembly structure of the 

maglev positioner [1]. 
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mechanical contact, the plant model can be thought of as 

a pure mass accelerating with the application of 

electromagnetic forces. Thus in an ideal linearized 

dynamic model, each diagonal term of the plant TF 

matrix could be considered as a double integrator, 

2

1
( ) ( )

xx yy
G s G s

ms

= = ,
2

1
( )

zz

G s

I s
φφ = ,  (10) 

where m is the mass of the platen and Izz is its principal 

moment of inertia about the z-axis. The off-diagonal 

terms and noise TF terms might be ignored in an ideal 

model. 

 

3. CLOSED-LOOP SYSTEM IDENTIFICATION 

 

This section describes the methodology adapted for 

the closed-loop system identification, the order-reduction 

algorithm to get fixed-order TFs, and the model 

validation in the frequency as well as time domains, 

together with physical interpretations of the identified 

models. Fig. 2 shows the steps involved in the 

identification and validation methods. These methods 

will now be discussed in detail. 

 

3.1. Methodology 

System identification is required to validate the 

analytical model (8)-(10) and to identify the dynamic 

coupling among the axes due to the non-ideal actuators 

and mechanical structure of the positioner, and 

misalignments in its assembly. Open-loop tests cannot be 

performed due to the inherently unstable nature of the 

maglev system [2]. Subsequently, the identification of 

the experimental system is carried out on the closed-loop 

system after the maglev positioner is stabilized about the 

operating point with a known decentralized controller in 

each DOF [14,15]. The schematic of this method is 

shown in Fig. 3. Since the system-identification 

procedure is carried out in discrete time, the continuous-

time model in (8) was transformed into difference 

equations using the zero-order-hold (ZOH) method with 

a sampling frequency of 5 kHz. For example, the 

discrete-time TF equation for x, under certain 

assumptions [14,15], is given by 
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where G(q), H(q), and M(q) are rational TFs, R(k) is the 

reference input signal, M(q) is the known controller TF, 

Fig. 2. Flow chart describing the major steps involved 

in the model identification and validation 

methods for an unstable multivariable system. 

 

Fig. 3. Block diagram representing the schematic used 

for identification in closed loop with known 

controller dynamics. 
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and q = z−1. When we identify Gxx(q), Ry(k) and ( )R kφ  

are set to zero. Due to the chosen structure for the 

parameterization of the plant and noise models, the TFs 

G(q) and H(q) are parameterized independently. The 

relations for identification of the coupling TFs may be 

similarly written using Gyx(q) and ( ).
x

G qφ  

Since we have full control over the excitation signal, it 

is desirable to use the signals that persistently excite the 

plant [15]. Furthermore, deterministic signals give 

cleaner estimates of transfer functions compared to the 

random ones [16]. Thus, the model identification was 

performed with a chirp signal. In this experiment, we 

used chirp signal with a magnitude of 1 µm, starting from 

DC and crossing 2500 Hz at 2 s. These numbers were 

chosen to excite the plant persistently without losing the 

closed-loop system stability. The total time of the 

excitation was 2 s with a sampling rate of 5 kHz. The 

experimental results of the system identification are 

presented in Fig. 4. The frequency response of the input 

signal is shown in Fig. 4(a). Fig. 4(b) shows the closed-

loop frequency response of the reference input signal, the 

identified TF, and the ideal closed-loop TF. 

Fig. 5(a) shows the 1-µm-amplitude chirp signal given 

in x, with its frequencies in the range of [0, 2500] Hz and 

the response of the closed-loop system in x, y, and .φ  

The total time of excitation was 2 s. Figs. 5(b) and 5(c) 

show similar plots with excitation in y and ,φ  the 

responses in the respective axes and the coupled 

responses. It may be seen from these plots that the plant 

follows the chirp signal closely in the low-frequency 

range, around [0, 50] Hz. It, however, amplifies the input 

in the intermediate-frequency range, and attenuates, in 

the high-frequency range. This is in agreement with the 

closed-loop TF identified in Fig. 4(b), which exhibits a 

resonance in the frequency range of [50, 250] Hz and a 

steep roll-off thereafter. 

From Figs. 5(a) and 5(b) the coupling in x with 

excitation in y is more conspicuous compared to that in y 

with excitation in x. This may be attributed to the fact 

that the y-component of the forces F5 and F6, which gets 

canceled to generate an effective motion in x are smaller 

(1/2×), whereas the canceling x-components for a desired 

effective motion in y come from the larger ( 3 2 )/ ×  

components of the forces F5 and F6 (refer to (9) for 

details on force transformation). Therefore, if there is 

any net non-zero force in the coupled axes due to 

misalignments or modeling uncertainties, the effect of 

(a) 

(b) 

Fig. 4. (a) Frequency response of a chirp signal with

frequencies from 0 to 2500 Hz used as a reference

input for closed-loop system identification, and

(b) closed-loop system frequency response in x

to this input signal with Bode magnitude plots of

the analytical model (dashed line), the plant TFs

from the fast Fourier transforms (FFTs) of the

input-output signals (thin solid lines), and the

identified TFs using the closed-loop system

identification (thick solid lines). 

 

 
(a) (b) (c) 

Fig. 5. Closed-loop system time responses to a chirp signal in (a) x, (b) y, and (c) φ  in the frequency range of [0, 

2500] Hz with coupled responses in other axes. 
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such a force will be more prominent in x compared to y. 

On the other hand, the coupling in φ  is greater with 

excitation in x compared to excitation in y. The reason 

for this may be explained as follows. The amount of 

canceling forces in φ  is the same for both the cases. 

However, in case of x, components from two forces, 

namely F5 and F6, get canceled, while in case of y, 

components from F4, F5, and F6 get canceled (refer to 

(9)). Therefore, if there is any misalignment in the 

actuators or position of the maglev stage with respect to 

the actuators, the effect of such misalignments and 

modeling uncertainties will be averaged over two forces 

in case of x while three forces in case of y. Accordingly, 

the net coupling will be less in case of the y-excitation. 

Finally, from Fig. 5(c), the coupling in x and y is 

minimal with excitation in ,φ  and the responses in 

these two axes are almost the same as that of position 

regulation. For further details on the force generation by 

the actuators for 6-DOF motion, the reader is referred to 

[1]. This comparison will be discussed in more detail in 

terms of the frequency response, and plant and coupling 

TFs in Section 3.3. 

 

3.2. Closed-loop identification algorithm 

With the reference input signals in the three axes and 

measured output signals in the respective axes as well as 

coupled axes, all nine TFs of the TF matrix in (8) can be 

identified. Model identification was performed with 

MATLAB using an algorithm consisting of the following 

steps. 

 

3.2.1 Identification of closed-loop plant and coupling 

TFs 

In this step, the parameters of the polynomials A, B, C, 

and D given in (11) are identified. Identification is 

performed using the following model structure [15]. 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
k

B q C q
F q X k R k n E k

A q D q
= − + .  (12) 

Note that (11) is a special case of the general structure 

given by (12). Also note that the signal-to-noise ratio in 

the above-mentioned experiments was experimentally 

determined to be about 80 dB and was found to be 

frequency-independent. Thus the contribution from the 

sensor noise E(k) in (11) may be ignored although it is 

not difficult to determine the noise TFs H(q) together 

with the plant TFs from the closed-loop input-output 

sequences. 

Identification was performed using iterative 

prediction-error minimization method. The estimation 

method is similar to auto-regressive moving average with 

exogenous input (ARMAX) method and uses 

optimization to minimize the cost function, defined as 

follows for scalar outputs. 

2

1

( ) ( ),
N

N

t

V G H e t

=

, =∑  (13) 

where e(t) is the difference between the measured output 

and the predicted output of the model. For a linear model, 

this error is defined by the following equation 

1( ) ( )[ ( ) ( ) ( )]e t H q x t G q r t
−

= − . (14) 

The subscript N indicates that the cost function is a 

function of the number of data samples and becomes 

more accurate for larger values of N. The estimation was 

performed using MATLAB. 

Let us now define the closed-loop TF as T(q), where 

( ) ( ) ( )
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1 ( ) ( ) ( )

G q M q B q
T q

G q M q A q
= = .
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Here the subscripts used in (11) were dropped for 

simplicity. Let [ ]
c c

G G
n d,  and [ ]

c c

M M
n d,  be the orders 

of the numerator and denominator polynomials of the 

continuous-time plant and controller TFs, respectively. 

Then, from the analytical plant model given by (10) and 

the stabilizing lead-lag controller design, we have 

[ ] [0 2],

[ ] [2 2].

c c

G G

c c

M M

n d

n d

, = ,

, = ,

 (16) 

Therefore, the order for the desired discrete-time closed-

loop TF from (15) using the ZOH method is 

[ ] [ ] [3 4]
d d

a b A B
n n n n, = , = , .  (17) 

Here the superscripts c and d signify continuous-time 

and discrete-time TFs, respectively, and the subscripts A 

and B signify the numerator and denominator polynomi-

als of the closed-loop TF ( ) ( )B q A q/  in (11). 

 

3.2.2 Deduction of plant TF 

The discrete-time plant model was obtained from the 

closed-loop TF identified in Subsection 3.2.1 as follows. 

Rearranging (15), we get the identity 

1( ) ( )[ ( ) ( ) ( )]G q T q M q M q T q
−

= − .  (18) 

Using (11) with the closed-loop TF orders (17) and the 

relation (18), we obtain the high-order identified plant 

TFs. For the purpose of order reduction and analysis of 

the frequency-domain behavior of the identified plant 

model, the TF was converted to a continuous-time model. 

The high-order identified continuous-time TF for x, for 

example, is given by (19) below. 
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and 
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The pole-zero map of this TF is shown in Fig. 6(a), 

and the magnitude of the TF is shown in Fig. 7(a) with a 

thick dashed line. 

 

3.2.3 Order reduction 

Although the identified TF (19) is 12th order, there are 

several pole-zero pairs at the identical locations on the 

pole-zero map as seen in Fig. 6(a) because of the way in 

which the TF was deduced in Subsection 3.2.2. Consider, 

for instance, a single-input-single-output (SISO) plant 

with the identified plant TF given by (18). The 

denominator polynomial of T(q) appears in both the 

numerator and the denominator of G(q) after 

simplification and hence results in pole-zero pairs at 

identical locations. The polynomials (s2+335s+1.2750 
610 )×  and 2 7( 6102 1 1090 10 )s s+ + . ×  in (19) result 

from such mathematical manipulation and hence are 

spurious in nature. The cancellation of these spurious 

pole-zero pairs reduces the order of the plant 

significantly. 

The order may be further reduced by eliminating the 

zeros which are at frequencies much higher than the 

closed-loop bandwidth and hence would not affect the 

system dynamics significantly. Appropriate adjustments 

need to be made in the TF magnitude. 

Finally, with the remaining poles and zeros, the 

dynamics of the system can be divided into two modes—

the first mode is the slowest and very close to a double-

integrator. This mode is of greatest interest in the design 

of a controller since it represents the rigid-body 

dynamics of the maglev positioner. The second mode 

corresponds to the mechanical vibrations of the maglev 

positioner with a resonant frequency around 325 Hz and 

can be ignored in the plant model since the designed 

controller has a control bandwidth of about 110 Hz and 

is not expected to excite this high-frequency mode. 

 

3.3. Reduced-order identified TF models 

With the order reduction described in Subsection 3.2, 

the order of the plant TF becomes [0 2].
c c

G G
iden

n d , = ,   

The reduced-order TF fit so obtained is shown in the Fig. 

7(a) with a thick solid line. It matches with the identified 

TF in the frequency range of [20, 300] Hz within an error 

of 1%. This error is calculated as ( ) ,
i r i
P P Pε = − /  

where Pi and Pr are the magnitudes of the identified plant 

TFs and their corresponding reduced-order fits. The 

corresponding pole-zero map is shown in the Fig. 6(b). 

The TFs for the coupling terms are obtained in a similar 

manner and are shown in Figs. 7(b) and 7(c). These 

identified continuous-time TFs are given by 

 
(a) The identified full-order TF in x. 

  
(b) The identified reduced-order TF in x. 

Fig. 6. Pole-zero maps. 
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The right-half-plane poles identified in (22a), (23a), and 

(24a) reflect the maglev system’s open-loop instability 

due to the negative spring constants of the magnetic 

origin. The frequency responses of the identified plant 

models are represented in Figs. 7(a), 7(e), and 7(i). These 
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plots show the analytical plant models (thin solid lines) 

from (10), the identified plant models (thick dashed 

lines) from (19) (for x) using the closed-loop system 

identification from the input-output time sequences, and 

the reduced-order fits (thick solid lines) from (22)-(24). 

From these frequency responses, it is apparent that there 

are certain mismatches between the analytical and 

identified models. The mismatch in the low-frequency 

range is due to the fact that the plant TFs are indeed not 

of pure double-integrators but consist of two real poles at 

different locations with the existence of magnetic springs 

in the actuators. In the high-frequency range, the 

mismatch may be due to unmodeled dynamics. However, 

in the frequency range of interest, [20, 300] Hz, the two 

models exhibit an almost perfect match. In addition to 

this match in the frequency domain, time-domain 

dynamic behaviors, particularly the transient response, of 

the reduced-order TFs are also important. 

Other identified TFs of interest are the off-diagonal 

ones in (8) that may be used to reduce the dynamic 

coupling among the axes. These TFs are also presented 

in Figs. 7(b), 7(c), 7(d), 7(f), 7(g), and 7(h). The orders 

of the reduced-order TFs are identically chosen to be 3 

for all the coupling terms for the consistency and ease of 

controller design using this information. A comparison 

between the TFs Gxy(s) and Gyx(s) shows that the peak 

value of the plot is greater for Gyx(s), particularly in the 

frequency range of [50, 250] Hz. Similarly, comparing 

( )
x

G sφ  and ( ),
y

G sφ  the magnitude of the ( )
x

G sφ  is 

greater. This is in agreement with the response plots in 

Figs. 5(a), 5(b), and 5(c) discussed earlier in Subsection 

3.1. 
 

3.4. Model validation 

In order to validate the model identification discussed 

above and demonstrate its feasibility in real-life 

applications, a MIMO control was designed using 

identified plant and coupling TFs models. Unlike the 

decoupled control with the linearized plant TFs about an 

operating point as given by (10), this MIMO control uses 

outputs from all three modes and calculates the controller 

input for the plant as well as the coupling TFs. The 

closed-loop system response with the designed controller 

is therefore expected to meet the objectives outlined in 

Section 1. A detailed discussion of the MIMO control 

design is beyond the scope of this paper as it mainly 

focuses on the identification of the unstable multivariable 

systems. For the sake of completeness, however, we 

present some experimental results that validate the 

accuracy of the identified models. 

The first result shown in Fig. 8 demonstrates the effect 

of the identified model on better and more accurate 

controller design. This figure shows the plant input and 

closed-loop responses to a 100-µm reference step of the 

actual controlled system with controllers designed using 

identified model (22) and analytical model (10). It also 

shows the simulated response using identified plant TF 

models. It is apparent from the figure that the identified 

model gives a closer match with the simulated results 

and hence is more reliable. The small mismatch between 

the simulated response and the response using the 

identified TF model is due to the fact that the simulation 

results do not incorporate the coupling terms. On the 

other hand, the actuator input computed by the controller 

as shown in the figure includes coupling terms from the 

other two outputs as well. 

Another set of experiments was conducted with an 

objective to demonstrate the increased working space 

and linearity achieved with the use of identified models. 

Fig. 9 shows the coupled closed-loop system responses 

in y and φ  with a 100-µm step in x. However, unlike 

Fig. 8 where a step was commanded about the operating 

point x = 0, the step command here was given at x = 2.9 

mm. Because of the nonlinearities present in the 

actuators that increase very rapidly with the increase in 

the distance between the coil and the magnet, a deviation 

of 2.9 mm from the operating point is large enough to 

make significant changes in the plant output. This is 

apparent from Fig. 9. Although the responses in x is 

almost similar to Fig. 8, the coupling with the controllers 

 
(a) (b) (c) 

 
(d) (e) (f) 

 
(g) (h) φ  (i) 

Fig. 7. Analytical plant TFs (thin solid lines), identified plant TFs (thick dashed lines) and reduced-order fit (thick

solid lines) from (a) x to x, (b) x to y, (c) x to ,φ  (d) y to x, (e) y to y, (f) y to ,φ  (g) φ  to x, (h) φ  to y, 

and (i) φ  to .φ  
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designed using analytical models increased significantly 

as we moved away from the operating point about which 

the system was linearized. This is due to the fact that 

there were no coupling TFs to capture and correct the 

cross-axial components in real time. With the use of 

identified coupling TFs in the design of MIMO control, 

this problem was taken care of. Note that similar 

coupling compensation can also be achieved through 

nonlinear feedback linearization if we have perfect 

knowledge of the actuator nonlinearities at all 

frequencies. However, even in a relatively simple system, 

modeling such nonlinearities accurately can be quite 

challenging. For more complex systems, this may not be 

feasible. However, closed-loop model identification 

offers an alternate and better option to identify and 

compensate for such nonlinear behavior present in the 

system—whether stable or unstable—by capturing the 

actual plant dynamics. 

 

4. CONCLUSIONS 

 

This paper proposed an approach for multivariable 

system identification in the closed-loop framework. In 

this approach, the dynamics of an unstable system is 

represented using a TF matrix in the standard form used 

in any traditional input-output identification method, but 

with open-loop TFs replaced with closed-loop TFs and 

with known controller structures. This model structure is 

capable of identifying a very large class of multivariable 

systems found in practical applications. The system 

identification problem was considered as the problem of 

simultaneously estimating the parameters of all three 

plant TFs and six coupling TFs of the TF matrix. An 

order-reduction algorithm was used to reduce the high-

order identified TFs to predetermined fixed-structure TFs, 

which facilitate the subsequent controller design. 

Experimental results on the frequency-domain 

validation of the identified models were presented for all 

nine TFs and compared with their analytical and full-

order counterparts. From these results, the reduced-order 

models were found to have a significantly close match 

with the identified results, with errors less than 1% in the 

frequency range of [20, 300] Hz. Step responses with the 

controllers designed with analytical and reduced-order 

identified TFs were also presented in this paper and 

compared to check for any missing transient dynamics 

and to discuss the improvements in the controller design 

with the identified models. The entire analysis was 

performed using difference equations to avoid any 

digitization error from the continuous-to-discrete-time 

conversion. The continuous-time analyses with Bode 

plots and pole-zero maps were performed to interpret the 

physical meaning of the identified models and to 

demonstrate the effectiveness of the closed-loop system-

identification and order-reduction algorithms. Step 

responses with the controllers designed using identified 

TFs were also presented to demonstrate the effectiveness 

of the developed closed-loop identification method in 

meeting all the key objectives. The identified TF models 

resulted in a reduction in cross-axial coupling from 9.213 

µm to 0.911 µm in translation and from 22.03 µrad to 

1.353 µrad in rotation; large range motion capability with 

a travel range of ±2.9 mm; and improved robust stability. 

 

REFERENCES 

[1] S. Verma, H. Shakir, and W.-J. Kim, “Novel elec-

tromagnetic actuation scheme for multiaxis nano-

positioning,” IEEE Trans. on Magnetics, vol. 42, no. 

8, pp. 2052-2062, Aug. 2006. 

[2] S. Earnshaw, “On the nature of the molecular forces 

which regulate the constitution of the luminiterous 

Fig. 8. Experimental validation of the identified plant

TFs—Plant input and closed-loop step responses

of the actual controlled system with controllers

designed using identified model (thick solid line)

and analytical model (thin solid line). Simulated

response (dashed line) shows a closer match

with the actual system response. Dotted line

shows reference input signal. 

 

Fig. 9. Response of the system to a 100-µm step at an

operating point 2.9 mm away from the point of

linearization with decentralized controllers

designed using linearized analytical plant

models ignoring coupling TFs (thin lines) and

with MIMO control designed with identified

plant and coupling TFs (thick lines). 

 



Time-Domain Fixed-Structure Closed-Loop Model Identification of an Unstable Multivariable Maglev Nanopositioning System 

 

41

ether,” Trans. of the Cambridge Philosophical So-

ciety, vol. 7, pp. 97-112, 1842. 

[3] X. Bombois, M. Gevers, and G. Scorletti, “Open-

loop versus closed-loop identification of Box-

Jenkins models: a new variance analysis,” Proc. 

44th IEEE Conf. on Decision and Control, pp. 

3117-3122, Dec. 2005. 

[4] L. Sun, H. Ohmori, and A. Sano, “Direct closed-

loop identification of magnetic suspension system,” 

Proc. IEEE Intl. Conf. on Control Applications, vol. 

1, pp. 749-754, Aug. 1999. 

[5] F. R. Hansen and G. F. Franklin, “On a fractional 

representation approach to closed-loop experimen-

tal design,” Proc. American Control Conference, pp. 

1319-1320, 1988. 

[6] S. K. Kuo, X. Shan, and C. H. Menq, “Large travel 

ultra precision x-y-q motion control of a magnetic-

suspension stage,” IEEE Trans. on Mechatronics, 

vol. 8, no. 3, pp. 334-341, Sep. 2003. 

[7] S. Dejima, W. Gao, K. Katakura, S. Kiyono, and Y. 

Tomita, “Dynamic modeling, controller design and 

experimental validation of a planar motion stage for 

precision positioning,” Precision Engineering, vol. 

29, no. 3, pp. 263-271, Jul. 2005. 

[8] E. Villota and S. Jayasuriya, “Model based control 

of a multidimensional positioning system - a com-

parison of controller designs with experimental va-

lidation,” Proc. American Control Conference, 

Portland, OR, pp. 1365-1370, Jun. 2005. 

[9] C. E. Lin and H. L. Jou, “Force model identifica-

tion for magnetic suspension systems via magnetic 

field measurement,” IEEE Trans. on Instrumenta-

tion and Measurement, vol. 42, no. 3, pp. 767-771, 

Jun. 1993. 

[10] K. Nakashima, T. Tsujino, and T. Fujii, “Multivari-

able control of a magnetic levitation system using 

closed loop identification and H∞ control theory,” 

Proc. 35th IEEE Conf. on Decision and Control, 

vol. 4, Kobe, Japan, pp. 3668-3673, Dec. 1996. 

[11] U. Forssell and L. Ljung, “Closed-loop identifica-

tion revisited,” Automatica, vol. 35, no. 7, pp. 

1215-1241, Jul. 1999. 

[12] P. M. J. Van den Hof and R. J. P. Schrama, “Identi-

fication and control—Closed-loop issues,” Automa-

tica, vol. 31, no. 12, pp. 1751-1770, Dec. 1995. 

[13] H. Shakir,W.-J. Kim, and S. Verma, “System identi-

fication and optimal control of a 6-DOF magnetic 

levitation stage with nanopositioning capabilities,” 

Proc. of the ASME International Mechanical Engi-

neering Congress and Exposition, Paper No. 60507, 

Nov. 2004. 

[14] R. Pintelon and J. Schoukens, “Box-Jenkins identi-

fication revisited Part I: Theory,” Automatica, vol. 

42, no. 1, pp. 63-75, Jan. 2006. 

[15] L. Ljung, System Identification: Theory for the Us-

er, 2nd ed., Prentice- Hall, Upper Saddle River, NJ, 

1999. 

[16] R. Pintelon and J. Schoukens, System Identifica-

tion: A Frequency Domain Approach, IEEE Press, 

2001. 

Huzefa Shakir received his B.Tech. 

(Hons) in Mechanical Engineering from 

Indian Institute of Technology, Kharag-

pur, India, in 2000, and his Ph.D. degree 

in Mechanical Engineering from Texas 

A&M University, College Station, in 

2007. Since 2007, he has been working 

as senior scientist with the applied re-

search division of Halliburton. He has 

worked as Assistant Manager in Suzuki Motor Corporation 

India for two years following receipt of the Bachelor’s degree. 

His expertise are in the areas of design and control of precision 

positioning systems, microelectromechanical systems, high-

temperature high-pressure sensors, electromagnetic telemetry, 

and precision wellbore placement. 

Dr. Shakir has published a monograph and more than twelve 

other publications in numerous journals and conferences pro-

ceedings. He was the recipient of the best paper award in the 

American Control Conference 2005, International Texas Public 

Education Grant 2006, and Fellowship at the Center for Teach-

ing Excellence, Texas A&M University. His biographical entry 

has been published in the prestigious Marquis’ WhosWho in 

America® 2010 and 2011 editions for his outstanding 

achievements in the field of engineering. He is a member of 

Institute of Electronics and Electrical Engineers (IEEE), Amer-

ican Society of Mechanial Engineers (ASME), Society of Pe-

troleum engineers (SPE) and The Honor Society of Phi Kappa 

Phi. He also serves on the Industry Steering Committee on 

Wellbore Survey Accuracy (ISCWSA). 

 

Won-jong Kim received his B.S. (sum-

ma cum laude) and M.S. degrees in Con-

trol and Instrumentation Engineering 

from Seoul National University, Seoul, 

Korea, in 1989 and 1991, respectively, 

and his Ph.D. degree in Electrical Engi-

neering and Computer Science from the 

Massachusetts Institute of Technology 

(MIT), Cambridge, in 1997. Since 2000, 

he has been with the Department of Mechanical Engineering, 

Texas A&M University (TAMU), College Station, where cur-

rently he is an Associate Professor and the Holder of the Dietz 

Career Development Professorship II. After the Ph.D. degree, 

he was with SatCon Technology Corporation, Cambridge, MA, 

for three years. His current research interests include the analy-

sis, design, and real-time control of mechatronic systems, net-

worked control systems, and nanoscale engineering and tech-

nology. He is the holder of three U.S. patents on precision posi-

tioning systems. 

He was the recipient of Korean Institute of Electrical Engi-

neers’ Student Paper Contest grand prize in 1988, Samsung 

Electronics’ Humantech Thesis gold prize for his MIT disserta-

tion in 1997, the NASA Space Act Award in 2002, and the 2005 

Professional Engineering Publishing Award for the best paper 

published in 2004 in Journal of Engineering Manufacture. He 

was also a semifinalist of the National Institute of Standards 

and Technology (NIST)’s Advanced Technology Program com-

petition in 2000. He was appointed a Select Young Faculty 

Fellow by TAMU College of Engineering and the Texas Engi-

neering Experiment Station twice in 2003 and 2005. He re-

ceived the BP Teaching Excellence Award by TAMU College 

of Engineering in 2006. He is Fellow of ASME, Senior Mem-

ber of IEEE, and Member of Pi Tau Sigma. Prof. Kim is Tech-

nical Editor of IEEE/ASME Transactions on Mechatronics, 

ASME Journal of Dynamic Systems, Measurement and Control, 

and International Journal of Control, Automation, and Systems. 


