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Abstract: This paper proposes an output feedback method to stabilize and control networked control 

systems (NCSs). Random time delays and packet losses are treated separately when an NCS is mod-

eled. The random time delays in the controller-to-actuator and sensor-to-controller links are modeled 

with two time-homogeneous Markov chains, while the packet losses are treated by the Dirac delta 

functions. An asymptotic mean-square stability criterion is established to compensate for the network-

induced random time delays and packet losses in both the controller-to-actuator and sensor-to-

controller links simultaneously. An algorithm to implement the asymptotic mean-square stability crite-

rion is also proposed. Further, a DC-motor speed-control test bed with Ethernet using User Datagram 

Protocol (UDP) is constructed and employed for experimental verification. Two sets of experiments, 

with and without 10% packet losses in the links, are conducted on this NCS. Experimental results illu-

strate the effectiveness of the proposed output feedback method compared to conventional controllers. 

This method could compensate for the effects of the random time delays and packet losses and guaran-

tee the system performance and stability. The integral time and absolute error (ITAE) of the experi-

ments without packet losses is reduced by 13% with the proposed method, and the ITAE of experi-

ments with 10% packet losses, by 30%. The NCS can track the reference command faithfully with the 

proposed method when random time delays and packet losses exist in the links, whereas the NCS fails 

to track the reference command with the conventional control algorithms. 

 

Keywords: Asymptotic mean-square stability, Markov chains, networked control systems, packet 

losses, random time delays. 

 

1. INTRODUCTION 

 

NCSs are a type of distributed control systems where 

the reference inputs, the plant outputs, and the control 

inputs are exchanged over a communication network. 

The study of NCSs has been an active and attractive re-

search area in the past several years due to its broad ap-

plications, such as mobile sensor networks [1], remote 

surgery [2], haptics collaboration over the Internet [3], 

[4], automated highway systems [5], and unmanned aeri-

al vehicles [6]. 

The introduction of a communication network into a 

control system has brought many advantages, such as no 

additional dedicated wiring, reduced weight and space 

requirement, ease of system diagnosis and maintenance, 

and increased system agility, etc. On the other hand, the 

communication network inevitably presents more con-

straints such as random time delays and packet losses 

that make the analysis and design of NCSs challenging.  

These random time delays and packet losses can de-

grade the system performance or even destabilize the 

system. How to compensate for the random time delays 

and packet losses has become one of the active research 

areas of NCSs. 

Random time delays can be divided into three major 

categories, time delays shorter than one sampling period, 

time delays longer than one sampling period but finite, 

and infinite delays which can also be considered as pack-

et losses. The analysis and modeling of random time 

delays can be performed with a deterministic model or a 

stochastic model. In [7], the random time delays were 

assumed to be deterministic, and the controller gain was 

constant when a hybrid system was analyzed. In [8], a 

delay-distribution-dependent criterion for the mean-

square stability of the NCS was derived by using the 

Lyapunov-Krasovskii functional approach and linear 

matrix inequality (LMI) technique. In [9], the random 

time delays were modeled with Markov chains, and the 

analysis mainly focused on the delays shorter than one 

sampling period. The control law was derived by setting 

up the cost function of linear-quadratic regulation (LQR) 

and linear-quadratic Gaussian (LQG) problems. In [10], 

the NCSs with unreliable data communication were stu-

died. An observer-based controller was designed to ex-

ponentially stabilize the NCSs in the sense of mean 

square and also achieved the prescribed H
∞ disturbance 

attenuation level. An estimation method was introduced 

to compensate for the lost data of the NCSs in [11]. The 
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controller design was considered for the states available 

and the states unavailable, respectively.  

In the discrete-time domain, [12-16] modeled the 

NCSs as jump linear systems and the time delays with 

Markov chains. Xiao et al. proposed two types of con-

troller-design methods for NCSs with time delays mod-

eled with Markov chains [13]. Zhang et al. proposed an 

output feedback method to analyze the time delays of 

NCSs and assumed the random time delays could only 

take integer values [14]. Ye et al. also modeled the time 

delays and packet losses in the NCS with Markov chains. 

Without the augmented state method, however, the com-

putation effort was reduced [15]. In [16], Xiong et al. 

proposed two types of packet-loss models, the arbitrary 

model and the Markov-chain model. The stability condi-

tions of NCS with packet losses were given based on a 

Lyapunov approach. Liu et al. proposed a time-delay-

compensation technique using the modified model-

predictive control method. The data-packet losses were 

compensated for with the predicative packets generated 

from the same model [17]. In [18], Schenato proposed an 

optimal estimation design for the NCS with time delays 

and packet losses. The stability of these estimators did 

not depend on packet delays but only on the overall 

packet-loss probability. 

In the cited references [13-16], the authors assumed 

the Markov-chain model could intuitively include the 

packet losses as well. However, the packet losses actual-

ly change the structure of the model. When a packet is 

lost, the sensor output or the control input will be un-

available in all sense, whereas for the time-delay case, 

the sensor output or the control input arrives at its desti-

nation node eventually with a certain amount of delays. 

Hence, the Markov-chain-based packet-loss model as-

sumes that the packet-loss information can be included 

by the same probability transition from the time-delay 

perspective will not closely catch the nature of the NCS. 

In [13] and [14], the stability analysis only considered 

the integer time-delay states. However, in the practical 

world, the time delays are non-integer numbers. In this 

paper, our methodology is based on the approach pre-

sented in [14] but treats random time delays and packet 

losses with separate models, which reveals the nature of 

the NCSs in a closer manner. The proposed models for 

time delays and packet losses are based on stochastic 

processes in the discrete-time domain so that the pro-

posed method can be implemented on a practical NCS 

without much modification. The proposed method con-

siders both integer and non-integer time delays.  

The rest of the paper is organized as follows. In Sec-

tion 2, the NCS system modeling methodology is formu-

lated to include time delays modeled with Markov chains, 

packet losses modeled with separate Dirac delta func-

tions, and a closed-loop NCS asymptotic mean-square 

stability criterion. In Section 3, the control algorithm to 

be implemented on a physical NCS is proposed. In Sec-

tion 4, key experiments are designed and performed to 

illustrate the effectiveness of the proposed output feed-

back method and stability criterion. In Section 5, conclu-

sions are given. 

2. SYSTEM MODELING 

 

A typical NCS has a closed-loop structure as shown in 

Fig. 1. As indicated in the dashed boxes, Server 

represents the controller on one end of the communica-

tion network whereas Client represents the plant includ-

ing sensors and actuators on the other end of the com-

munication network. 

Consider the NCS setup in Fig. 1, assume the whole 

NCS is a linear discrete-time system. The state-space 

model of the plant is 

 ( 1) ( ) ( ),
p p p p
k k k+ = +x A x B u�

 
(1) 

( ) ( ),
p p

k k=y C x  (2) 

where xp(k)∈Rn, u(k)∈Rm, and y(k)∈Rp are the state, 

control-input, and plant-output vectors, respectively. 

( )k ∈u� Rm and ( )k ∈y� Rp are the delayed control-input 

and plant-output vectors. Ap, Bp, and Cp are the known 

matrices with appropriated dimensions.  

Similarly, the controller has the model as  

 ( 1) ( ) ( ),
c c c c
k k k+ = +x A x B e  (3) 

( ) ( ) ( ),
c c c

k k k= +u C x D e  (4) 

where ( ) ( ) ( )k k k= −e r y�  is the error, and r(k)∈Rp is 

the reference command. Ac, Bc, Cc, and Dc are to be de-

termined to compensate for the random time delays and 

packet losses, which will be discussed in Section 2.3 

with details that include the stability criterion and algo-

rithm. An experimental example of how to solve the con-

troller matrices will be given in Section 4.3. 

 

2.1. Time delays modeled with Markov chains 

In general, time delays can be categorized as determi-

nistic delays and stochastic delays. Due to the stochastic 

nature of the communication network, a stochastic me-

thod is adopted in this paper to model the random time 

delays in the communication links since it can model the 

random process of the network condition more realisti-

cally compared to a deterministic method. As in [12-14], 

we assume the status of time delays mainly depends on 

the previous status such that the random time delays τca 

and τsc can be modeled with finite-state time-

homogeneous Markov chains. For more details of the 

effectiveness of time delays modeled with Markov 

chains, refer to [13,14]. 

In Fig. 1, τca and τsc represent the random time delays 

in the controller-to-actuator link and the sensor-to-

 

Fig. 1. NCS block-diagram. τca and τsc represent the 

random time delays, and δca and δsc represent the 

packet losses in the controller-to-actuator and 

the sensor-to-controller links, respectively. 
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controller link, respectively. In this paper, τca and τsc are 

modeled with two time-homogeneous Markov chains 

with finite Markov states and take values in the set 

{ ; 1, , }ca

i
i pτ=  ∈ =   �P I  and { ; 1, , },sc

m
m qτ=  ∈ =   �Q M  

respectively. Their transition-probability matrices are Λ 

= {λij} and Γ = {µmn}, respectively. These transition-

probability matrices represent the probabilities that τca 

and τsc jump from the state i to j and the state m to n, re-

spectively. The definitions of λij and µmn are 

Pr( ( 1) | ( ) ),ca ca ca ca
ij j ik kλ τ τ τ τ= + = =  (5) 

Pr( ( 1) | ( ) )sc sc sc sc

mn n m
k kµ τ τ τ τ= + = = , (6) 

where 0,ijλ ≥ 0,
mn

µ ≥  and 
1

1,

p

ij

j

λ

=

=∑
1

1,

q

mn

n

µ

=

=∑  for 

all ,i j∈ I  and , .m n∈M  

 

2.2. Packet-loss modeling 

The packet loss in NCSs is another challenge induced 

by the communication network. Packet losses could take 

place when the network is congested, or the queues of 

routers and servers are overflown. NCSs do not monitor 

the network conditions, so explicit packet-loss informa-

tion is unavailable to either Server or Client in the sense 

of real time.  

A simplest stochastic model treats packet losses as a 

Bernoulli process [5]. It can also be modeled with a 

Markov chain [19] or a Poisson process [20]. Normally, 

packet losses share no common probabilistic characteris-

tics with the random time delays since their causes are 

usually different and not always coupled. In general, for 

the case of packet losses, the system will require exten-

sive control input to guarantee the stability and system 

performance. Whenever a packet is lost, time-delay in-

formation is irrelevant and unavailable. Therefore, as-

suming that a packet loss can be intuitively modeled with 

a Markov chain together with time delays cannot 

represent their independence in a communication net-

work. In this paper, a separate packet-loss model is in-

troduced. 

As illustrated in Fig. 1, the network backbone can be 

treated as a jump system. In this case, when a packet is 

lost, the current output packet or the control input packet 

will be unavailable to either the servers or the clients, so 

that the output or control input from previous sampling 

period will be held for the current period. The time-delay 

information from previous period will also be inherited.  

In Fig. 1, the Dirac delta functions, δca and δsc 

represent the packet losses in the controller-to-actuator 

and the sensor-to-controller links, respectively. The nota-

tion of the packet losses follows [5] as below.  

1
( )

0

ca
if no packet is lost

k
if a packet is lost

δ


= 


 (7) 

1
( )

0

sc
if no packet is lost

k
if a packet is lost

δ


= 


 (8) 

Unlike [5], however, we do not assign the Bernoulli 

probabilities to δca and δsc. Packet losses can be stochas-

tic so that a pre-assigned fixed probability like Pr(δca(k) 

= 1) would not represent the nature of the packet losses 

realistically. That is, if either δca or δsc takes the value 0, 

there is a packet lost in the corresponding links. Other-

wise, only random time delays exist in the links.  

 

2.3. Controller design 

As in Fig. 1, consider the time delays τca and τsc. We 

introduce the ceiling function 

0( )f
h

τ τ

τ

+ 
=  
 

, (9) 

where τ0 is the time threshold, and h is the sampling pe-

riod. The time threshold τ0 includes the sum of the data 

sampling time, data-packet generating time, packet- 

processing time, queuing time, etc. In each sampling 

period, these times may not be exactly the same, but can 

be quite deterministic. Therefore, an upper bound τ0 can 

be set as the time threshold. Then the output data packet 

arriving at Server is ( ) ( ( ( ))).sck k f kτ= −y y�  This can 

also be applied to the control input, such that ( )k =u�
 

( ( ( ))).cak f kτ−u  Note that for τca and τsc, the threshold 

τ0 may take different values.  

Fig. 2 illustrates an example timing diagram of packet 

exchanges between Server and Client. In Fig. 2, the lines 

with an arrowhead represent the transmission of the sen-

sor packets, and the lines with a circle, the control pack-

ets. The horizontal length of each line indicates the ran-

dom time delays of each packet in the links. Several 

possible scenarios are shown in Fig. 2. The first case is 

that both the τca and τsc are shorter than h. The second 

case is that both the τca and τsc are longer than h. The last 

case in Fig. 2 is that τsc is shorter than h, and τca is longer 

than h. For instance, if τsc + τ0 < h, then f (τsc) = 0. Thus, 

when the output packet arrives at Server, it is indicated 

as ( )ky�  in the k-th sampling period. Likewise, if h < τsc 

+ τ0 < 2h, then f (τsc) = 1. Thus the output packet arrives 

at Server will be ( 1)k −y�  in the k-th sampling period.  

Now consider the NCS in Fig. 1 with random time de-

lays and packet losses. The outputs to the controller 

( )ky�  and the control inputs to the plant ( )ku�  are 

( ) ( ) ( ( ( )))

( ) ( 1 ( ( 1))),

sc sc

sc sc

k k k f k

k k f k

δ τ

δ τ

= −

+ − − −

y y

y

�

 
(10) 

 

 

Fig. 2. Example of timing diagram of NCS communica-

tion. 
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( ) ( ) ( ( ( )))

( ) ( 1 ( ( 1))),

ca ca

ca ca

k k k f k

k k f k

δ τ

δ τ

= −

+ − − −

u u

u

�

 
(11) 

where ( ) 1 ( )sc sc

k kδ δ= −

 
and

 
( ) 1 .( )ca ca

k kδ δ= −  By 

(10) and (11), if packet losses take place in the links, 

previous data packets will be used. This provision can 

compensate for one packet loss. For consecutive packet 

losses, a more robust controller or predictor will be ne-

cessary such as autoregressive (AR) model or local cas-

cade controller, etc. In this paper, we will focus on the 

case of one packet loss. The case of the consecutive 

packet losses is the further research effort of the authors. 

Augment the plant’s states as follows with all the poss-

ible Markov states of τsc 

( )

( ) ( 1) ( 2) ( .1)

p

T
T T T T
p

k

k k k k q

=

 − − − − 

x

x y y y�

 

Then the plant’s model can be written as 

 ( 1) ( ) ( ),
p p p p
k k k+ = +x A x B u�

 
(12) 

( ) ( )
p p

k k=y C x� , (13) 

where  

,

p

p

p

 
 
 
 
 =
 
 
 
  

A 0 0 0

C 0 0 0

0 I 0 0

0 0 0

0 0 I 0

A

� �

� �

� �

� � �

� � � � � �

� �

 ,

p

p

 
 
 
 

=  
 
 
 
  

B

0

0
B

0

0

�

 

( ,) ( )sc sc
p k kδ δ =  C 0 1 1 0� �

 

and 1 is the unit matrix with all elements equal to 1, and 

the f (τsc(k))-th entry equals to δsc(k)1. 

Similarly, the augmented controller state vector is as 

follow with all the possible Markov states of τca 

( )

( ) ( 1) ( 2) ( ,1)

c

T
T T T T
c

k

k k k k p

=

 − − − − 

x

x u u u�

 

and the corresponding controller model is  

 ( 1) ( ) ( ) ( ),
c c c c c
k k k k+ = − +x A x B y B r�

 
(14) 

( ) ( )
c c

k k=u C x� , (15) 

where  

,

c

c

c

 
 
 
 

=  
 
 
 
  

A 0 0 0

C 0 0 0

0 I 0 0

0 0 0

0 0 I 0

A

� �

� �

� �

� � �

� � � � � �

� �

 ,

c

c

c

 
 
 
 

=  
 
 
 
  

B

D

0
B

0

0

�

 

( ,) ( )ca ca
c k kδ δ =  C 0 1 1 0� �  

and the f (τca(k))-th entry equals to δca(k)1. 

Augmenting the new plant and controller model with 

,
T

p c
T T =  x x x  and the closed-loop dynamics will be 

( 1) ),( ) (k k+ = +x A BKC x  (16) 

where ,

p
 

=  
  

A 0
A

0 0

,

p
 

=  
  

0 B
B

I 0

,

c c

c

 −
=  
 

A B
K

C 0
 

and .
p

 
=  
 

0 I
C

C 0
 

For the stability analysis, we adopt Definition 1 in [21] 

and Theorem 1 in [22]. 

Definition 1 [21]: Consider the jump linear system Jd 

( 1) ( ( )) ( ) ( ( )) ( )
:

( ) ( ( )) ( ) ( ( )) ( ),
d

k k k k u k
J

k k k k u k

η η

η η

+ = +


= +

x A x B

y C x D
 

where η(k) is a discrete homogeneous Markov chain with 

states 
1 2

( , , ).
N

S S S S=  ,  �  The system Jd with u(k) = 0 

is said to be asymptotic mean-square stable if  

{ }2( ) 0E k →x  as ,k →∞  

for any initial condition 
0

(0) =x x  and initial distribu-

tion η(0) = η0.  

Theorem 1 [22]: Let there exists the nonnegative 

functional ( , , ),
i h i

V V i x x
−

=  ,  � i Z∈  for which the 

conditions 

2{ } { },
i i

E V cE x∆ ≤ −  ,i Z∈  

where 
1

   

i i i
V V V

+
∆ = −  and 0c >  hold. Then the system 

Jd is asymptotic mean-square stable. 

With Theorem 1, the sufficient and necessary condi-

tions of the asymptotic mean-square stability of the 

closed-loop system (16) can be derived as follows. 

Theorem 2: The closed-loop NCS in (16) is asymptot-

ic mean-square stable if and only if there exists 

( , ) ( , ) 0T
i m i m=  >P P  such that the following matrix 

inequality  

1 1

( , ) ( ) ( , ) ( )

( , ) 0

p q
T

ij mn

j n

i m j n

i m

λ µ

= =

 
 = +  + 

 
 

                −  <

∑∑H A BKC P A BKC

P

 (17) 

holds for all i∈ I  and m∈M . 

Proof: Sufficiency: For the closed-loop NCS in (16), 

construct the Lyapunov function as 

( ( ), ) ( ) ( ( ), ( )) ( )T ca sc
V k k k k k kτ τ =  x x P x . (18) 

Then  

( ( ), ) ( ( 1), 1) ( ( ), )

( 1) ( ( 1), ( 1)) ( 1)

( ) ( ( ), ( )) ( ).

T ca sc

T ca sc

V k k V k k V k k

k k k k

k k k k

τ τ

τ τ

∆  = +  + −  

= + +  + +

  −  

x x x

x P x

x P x

 (19) 

Assume that τca is at the Markov state i in the k-th 
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sampling period and will be at the Markov state j in the 

next sampling period. Similarly, τsc is at the Markov state 

m in the k-th sampling period and will be at the Markov 

state n in the next sampling period. For the simplicity, we 

denote ( ( ), ( ))ca sc

k kτ τ P  as P(i, m) hereafter. Note that 

(i, m) is not the corresponding entry of matrix P, but the 

corresponding Markov states of the time delays.  

Then (19) can be reformulated as 

( ( ), )

( 1) ( , ) ( 1) ( ) ( , ) ( )

( )[( ) ( , )( ) ( , )] ( ).

T T

T T

V k k

k j n k k i m k

k j n i m k

∆  

= +  + −  

= +  + −  

x

x P x x P x

x A BKC P A BKC P x

 (20) 

The next time-delay state will depend on the current 

one, and the conditional expectation of (20) is as follows. 

1 1

{ ( ( ), )}

{ ( )[( ) ( ( , ) | ( , ))( )
( , )] ( )}

{ ( )( ) ( , ) ( )

( , ) ( )}

{ ( ) ( , ) ( )}.

T T

p q
T T

ij mn

j n

T

E V k k

E k j n i m
i m k

E k j n

i m k

E k i m k

λ µ

= =

∆  
= +   +
    −  

 
= +  + 

 
 

    −  
=  

∑∑

x

x A BKC P P A BKC

P x

x A BKC P A BKC

P x

x H x

 (21) 

If ( , ) 0,i m <H  then  

min
2

{ ( ( ), )} { ( ) ( , ) ( )}

{ ( , ) ( ) ( )}

{ ( ) },

T

T

E V k k E k i m k

E i m k k

E k

σ

σ

∆  =  

≤ −  

≤ −

x x H x

x x

x

 (22) 

where 
min min

( , ) ( ( , ))i m i mσ σ = −  H is the minimum ei-

genvalue of –H(i, m) and 
min

inf{ ( , ),i mσ σ=  ,i∈ I m∈  

} 0>M  is the infimum of these minimum eigenvalues. 

According to Theorem 1, if H(i, m) < 0, then the 

closed-loop system (16) is asymptotic mean-square sta-

ble.  

Necessity: Under the assumption that (16) is mean-

square stable and Theorem 1, with some α > 0 

2

{ ( ( ), )} { ( ) ( , ) ( )}

{ ( ) }

{ ( )( ) ( )}

T

T

E V k k E k i m k

E k

E k k

α

α

∆  =  

≤ −

= −

x x H x

x

x I x

 (23) 

such that { ( ) ( , ) ( )} { ( )( ) ( )}T T
E k i m k E k kα − −x H x x I x = 

{ ( )[ ( , ) ] ( )} 0,T
E k i m kα + ≤x H I x  and ( , ) 0.i m α + ≤H I  

Then β + α  ≤ 0, where 
max max

sup{ ( , ) ( ( ,i m iβ β β=  = H  

)), , }m i m ∈  ∈I M  is the supremum of the maximum 

eigenvalues of H(i, m). Since α > 0, such that β < 0, and 

H(i, m) < 0. Hence, the closed-loop system (16) is 

asymptotic mean-square stable, and H(i, m) < 0. 

This completes the proof.          � 

The aforementioned asymptotic mean-square stability 

condition, (17) is nonlinear and difficult to be imple-

mented in real time. A linear criterion will be introduced 

based on the LMIs.  

Theorem 3: There exists a controller that has the form 

as in (3) and (4) such that the closed-loop system (16) is 

asymptotic mean-square stable if and only if there exists 

( , ) ( , ) 0T
i m i m=  >P P  satisfying 

( , ) ( , )
0

( , ) ( , )T

i m i m

i m j n

   
> 

   

P N

N G

 (24) 

with 
1 1

2 2

1 1

( , ) ( .)
p q

T
ij mn

j n

i m λ µ

= =

 = +∑∑N A BKC  

Proof: The proof is obtained by Schur complement 

with G( j, n)P( j, n) = I and Theorem 2.  

This completes the proof.          � 

The conditions in Theorem 3 are in fact a set of LMIs 

with non-convex constraints. The on-line calculation of 

the coefficient matrices may require long computational 

time and induce more time delays to the data processing 

and control-law generation. Hence, the off-line calcula-

tion is adopted in this paper, and experiments are con-

ducted for its effectiveness to the NCSs in the real-time 

sense. The control law with various levels of time delays 

and packet losses will be computed off-line and be tabu-

lated for looking up during the implementation. 

  

3. ALGORITHM IMPLEMENTATION  

 

Practical NCSs normally have no clock synchroniza-

tion mechanism over the entire communication network. 

Therefore, no explicit time-delay information is available 

to Server and Client in real time. Similarly, no explicit 

packet-loss information can be detected in real time ei-

ther. All the information can be obtained by the next 

sampling period based on the assumption in the paper 

without consecutive packet losses. Due to the stochastic 

nature of the communication network, the packets con-

taining the control inputs of each loop that arrives at 

Client may not be in the same sequence as they were 

initially sent by Server. All these possibilities make it 

challenging to implement the controller in the practical 

NCSs.  

By setting up the time-stamp segment in the packets 

traveling through the communication network, the total 

time delays and packet losses can be detected by Client 

at the end of each sampling period. The total time delays 

can be inferred by calculating the difference between the 

time instance Client sends sensor packets to Server and 

the time instance Client receives control packets from 

Server. The structure of the total time delays has the fol-

lowing form. 

( ) ( ) ( ) ( )ca sctimestamp k k k kτ τ τ∆ = + + , (25) 

where τ(k) includes the packet-processing time, queuing 

time, other calculating time, etc., on both Server and 

Client. Note that, in general, τca and τsc are not necessari-

ly the same. Without a clock-synchronization mechanism, 

the exact τca and τsc are unavailable, and we use  

1
( ) ( ) ( )

2

ca sck k timestamp kτ τ≈ ≈ ∆  (26) 

in the controller design and implementation to be pre-
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sented in Section 4.3. Compared to the time delays over 

the communication network, the packet-processing time, 

queuing time, or calculating time can be much smaller or 

neglected under certain circumstances. If Client receives 

no updated control signal within a certain time period, it 

may assume the packet has been lost.  

Note that the time delays calculated by tracking the 

time stamps can only be accessed by the end of each 

sampling period, so the current time-delay information 

will only be able to be applied to the NCS by the next 

sampling period. Packet losses can be handled similarly. 

Server will use the time-delay information carried from 

the previous data packet to compensate for the effect of 

time delays and packet losses a sampling period later.  

The implemented algorithm is illustrated in Fig. 3. 

This flow chart shows the single-server single-client case 

and can also be applied to single-server multiple-client 

and multiple-server multiple-client cases. In each sam-

pling period, Server waits for the output packet arriving 

from Client. The details of the data-packet structures will 

be given in Section 4. All the control laws for various 

time-delay states and packet losses are calculated off-line 

and tabulated on Server. When the packet arrives, Server 

first checks whether a packet was lost in the previous 

sampling period by checking the corresponding data 

segment in the packet. If a packet was lost, Server uses 

the previous packet, chooses the control law with packet 

losses, and calculates the corresponding control input for 

the plant. If no packet was lost, Server checks the ran-

dom time-delay states. The time-delay information is 

contained in the corresponding data segment. Then Serv-

er chooses the control law to calculate the control input 

based on the time-delay states. Then it sends the control-

input packet back to Client to actuate the plant. If the 

newly updated control-input packet is lost in the link, 

Client will use previous control-input data to actuate the 

plant. 

 

4. CONTROLLER IMPLEMENTATION AND 

EXPERIMENTAL RESULTS 

 

In this section, key experimental results are provided 

to verify the effectiveness of our Markov-chain-based 

output feedback method. A DC-motor speed-control sys-

tem was set up as the plant [23]. The speed of a DC mo-

tor is controlled over the NCS based on the Ethernet lo-

cal area network (LAN) within our lab. 

 

4.1. Experiments setup 

Linux Redhat 7.3 with Real-Time Application Inter-

face 3.4 (RTAI 3.4) [24] is the operating system running 

on Server, and Linux Ubuntu 6.10 with RTAI 3.4, on 

Client. The control and measurement device interface 

(Comedi) [25] is used as the drivers and libraries of data 

acquisition on Client. A PCI-6221 data-acquisition card 

by National Instruments enables the DC motor test bed to 

send out sensor-output data packets and receive control-

input data packets through the LAN. The speed control is 

achieved by controlling the output voltage of a pulse-

width modulation (PWM) amplifier. Fig. 4 shows the 

block diagram of the entire experimental setup. 

The communication network in the experiment is the 

100-Mbps Ethernet with unblocked UDP sockets. UDP is 

fast, unreliable, and connectionless compared to Trans-

mission Control Protocol (TCP), but has a compact 

header. Depending on the specifications and system re-

quirements of various NCSs, UDP can be a possible 

choice as a suitable protocol. For some NCSs, UDP is a 

preferred protocol for better performance [26]. Due to 

the real-time characteristics of our NCS, UDP is chosen 

to be the protocol for the experiment. More details about 

the comparison of TCP and UDP and the reasons to 

choose UDP as the communication protocol can be found 

in [26-28]. The data-packet structures for both Server 

and Client are as follow. 

 

Fig. 3. Flow chart of algorithm implementation. The

solid lines represent the independent control

flow on Server and Client. The dashed lines

represent the chronological data exchange be-

tween Server and Client. 

 

Fig. 4. Block diagram of the DC motor system. 
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Fig. 5. Data-packet structures. 

 

As in Fig. 5, the Ethernet header, IP header, and UDP 

header are the standard protocol headers. Control data 

and sensor data are the data segments generated by Serv-

er and Client, respectively. Timestamp is set up by Client 

to track the total time delays. Identifier is to identify 

Server and Client. Delay/loss info is used to track the 

random time delays and packet losses. If a packet is lost, 

this segment contains negative value to notify Server. If 

no packet is lost, this segment contains the total time 

delays for Server to compare with the random time-delay 

states as defined above.  

 

4.2. System modeling 

Based on the DC motor datasheet [29], its state-space 

model can be represented as 

1) 0.26( ( ) 2.04 ( )
p p

x k x k u k+ = − + , (27) 

(( ) )
p

y k x k= , (28) 

where u(k)∈R is the input voltage, and y(k)∈R is the 

angular velocity, respectively. 

The network-induced time delays were measured to 

determine the key statistical characteristics of the NCS 

test bed. The time delays in the NCS with this DC motor 

system are shown in Fig. 6.  

The random time-delay experiment was performed for 

10,000 iterations, and the delays were measured in milli-

seconds. As aforementioned in Section 3, the time delays 

attained by the experiment are the total delays in the 

NCS. From Fig. 6, the average of the time delays is be-

tween 0.45 and 0.5 ms, and there are some jitters existing 

in time delays with the average of 0.8 ms. We took these 

two cases as two time-delay states for the Markov-chain-

based model. According to the algorithm in Section 3, τca 

and τsc in this experiment will be one half of the total 

time delays as indicated in (26) such that the time-delay 

Markov states of τca and τsc will be 

{0.23, 0.4}= =  P Q . (29) 

Equation (29) gives the Markov time-delay states of 

the experiments. The first Markov state of 0.23 ms 

represents the average of the time delays, and the second 

Markov state of 0.4 ms represents the jitters in either the 

controller-to-actuator link or the sensor-to-controller link. 

τca and τsc will take one of the values in the set. As men-

tioned in Section 3, τca and τsc are not necessarily the 

same, but we assume they are since the explicit time-

delay information is unavailable in the experiment. Note 

that the random time delays may not be exactly the same 

for each sampling period, and each state in the set actual-

ly represents certain time intervals. A time delay shorter 

than 0.35 ms represents the first Markov state, and any 

time delay longer than 0.35 ms, the second Markov state. 

By fixing the current Markov state, the transition-

probability matrix can be constructed by counting the 

number of the next Markov state that falls into either the 

first Markov state or the second Markov state in (29). 

The transition-probability matrices of the two Markov 

states are determined experimentally as 

0.93 0.07

0.75 0.25

 
= =  

 
Λ Γ . (30) 

Equation (30) gives the probability that the time de-

lays jump from the current Markov state to the next 

Markov state. (i.e., if the current time delay is 0.23 ms, 

then the next time delay will be 0.23 ms at 93% probabil-

ity, and be 0.4 ms, 7%).  

 

4.3. Controller design and implementation 

The LMI stability criterion developed in Section 2 has 

been applied in the Matlab with the LMI Toolbox, and 

the V-K iteration algorithm in [13] with the following 

initial P matrix. The matrix P(i, m) depends on the Mar-

kov states of τca and τsc. For instance, if τca is at the first 

Markov state of 0.23 ms, and τsc is at the second Markov 

state of 0.4 ms, P(i, m) will be denoted as P(1, 2). Set a 

state vector w12 = [0.23  0.4]T for P(1, 2), and define 

12 12
(1, 2) ) ,( Tdiagγ ⋅ ⊗P w w I�  where γ is a weight coef-

ficient for the optimization and ⊗  is the Kronecker 

product. The dimension of I depends on the problems, 

where I is 4×4 identity matrix in our experiments. All the 

other P(i, m) can be constructed in the same way. These 

initial P(i, m) will be applied to start the LMI solver and 

V-K iteration algorithm, which will converge to the final 

states at the end of all the iterations or when the errors 

satisfy the pre-set error bounds. The choice of initial P(i, 

m) may vary. The convergence of the V-K iteration algo-

rithm can be referred to [13]. Then with solving (24) 

using Matlab LMI Toolbox and the V-K iteration algo-

rithm with the corresponding constraints, the controller 

can be designed.  

The controllers are designed as presented in Table 1. 

The 4-tuple {τca, τsc, δca, δsc} in Table 1 represents differ-

ent Markov states of the random time delays and packet 

losses as defined in Section 2. Ac, Bc, Cc, and Dc are the 

controller matrices defined in (3) and (4) and derived 
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Fig. 6. Total time delays in the NCS. 
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from Theorem 2. The order of the controller can be set as 

needed. A higher-order controller may promise more 

robust system performance but require more computa-

tional efforts and bring more complexity to the system. 

In our experiments, the plant represented with (27) and 

(28) is a first-order system. We design the controller to 

be first-order, so the whole closed-loop system is second-

order.  

As mentioned in Section 3, when the packet is lost, no 

time-delay information will be available. The 4-tuple {–, 

–, 0, 0} represents the case that both the controller-to-

actuator and the sensor-to-controller packets are lost. The 

sensor-to-controller packet loss is represented by {–, –, 1, 

0}. However, Server will not be able to calculate the up-

dated control input since it has not received any newly 

updated output information. The other case of the con-

troller-to-actuator packet loss is represented by {–, –, 0, 

1}. When this happens, the updated control input is cal-

culated by Server but cannot arrive at Client. Therefore, 

all these cases can be grouped into the case {–, –, 0, 0} in 

the experiments since Client will not receive any updated 

control input for all these three cases. 

 

4.4. Experimental result 

The system performance with the proposed method is 

used to compare the performance with that of the Propor-

tional-Integral (PI) controller in [23]. The difference eq-

uation of the PI controller is 

( ) ( 1) 1.4925 ( ) 1.5075 ( 1)u k u k e k e k= − − + − . (31) 

All experiments were executed with a 3-ms sampling 

period for 500 iterations. The reference speed at the DC 

motor in both of the experiments was set to be 10 revolu-

tions per second (rps). 

Two separate experiments, without packet losses and 

with 10% packet losses, were conducted to evaluate the 

effectiveness of the proposed method. All the experi-

ments were executed under the same network condition 

as the time-delay experiment in Fig. 6. The Ethernet in 

our lab was robust that no packet losses occurred even 

with UDP. Therefore artificial packet losses were intro-

duced to the NCS with an approximate 10% loss rate. A 

random function that takes the value from 0 to 1 was 

introduced, and a threshold of 0.1 (10% loss rate) was set 

for the comparison. If the random number was less than 

the threshold, the packet would be dropped from the 

NCS. Note that the random modulo operation does not 

generate a truly uniformly distributed random number in 

[0, 1], but it is generally a good approximation. Since we 

run the experiments with a large number of iterations, we 

assume that the packet-loss rate is about 10%.  
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Fig. 7. Step responses of DC motor without packet losses. 
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Fig. 8. Step responses of DC motor with 10% packet 

losses. 

 

The results are shown in Figs. 7 and 8. Fig. 7 shows 

the results of the PI controller and the proposed control-

ler without artificial packet losses. Without packet losses, 

the steady-state errors of the conventional PI control and 

the method proposed in this paper are almost the same. 

Fig. 8 shows the experimental results with 10% random 

artificial packet losses. As shown in Fig. 8, even when 

packets were lost in the communication network, our 

approach could track the reference command faithfully 

whereas the PI controller could not compensate for the 

random time delays and packet losses. The proposed 

method not only uses the previous control data but also 

compensates for the effect of the packet losses. Hence 

the system performance can be enhanced. 

Figs. 9 and 10 show the ITAE of both of the experi-

ments with the proposed method and the PI controller. 

Each figure shows the ITAE of the experimental data 

without packet losses and with 10% packet losses. From 

these figures, we can see when packets are lost in the 

communication network, system errors dramatically in-

crease. From Figs. 9 and 10, the proposed method re-

duced the ITAE by about 13% without packet losses. For 

the packet losses case, the proposed method reduced the 

ITAE by as much as 30% compared to the PI controller. 

Table 1. Controller parameters. 

{τca, τsc, δca, δsc} A
c
 B

c
 C

c
 D

c
 

{0.23, 0.23, 1, 1} 1.0102 0.9687 0.0396 1.7621

{0.23, 0.4, 1, 1} 1.0155 0.9879 0.0408 1.7889

{0.4, 0.23, 1, 1} 1.0155 0.9879 0.0408 1.7889

{0.4, 0.4, 1, 1} 1.0412 1.0030 0.0421 1.8162

{–, –, 0, 0} 1.1974 1.1534 0.0557 2.0886
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In all these results, the Markov-chain-based method pro-

posed in this paper exhibited excellent system perfor-

mance. 

 

5. CONCLUSION 

 

This paper proposed an output feedback method for 

the stabilization and control of NCSs with random time 

delays and packet losses. This proposed method requires 

less computational effort and memory usage. By model-

ing the random time delays with time-homogeneous 

Markov chains and packet losses with Dirac delta func-

tions, the closed-loop system was stabilized, and the per-

formance was much enhanced compared to a conven-

tional control method. The asymptotic mean-square sta-

bility criterion for the NCSs was obtained in terms of a 

Lyapunov function and a set of LMIs with matrix con-

straints. An algorithm implementation of the stability 

criterion was also presented in the paper. We constructed 

and employed a DC-motor speed-control test bed over a 

100-Mbps Ethernet using unblocked UDP sockets for 

experimental verification. The experimental results dem-

onstrated the feasibility and effectiveness of the proposed 

method. The proposed method enhanced the system per-

formance with and without packet losses compared to a 

conventional control algorithm. The ITAE without pack-

et losses was reduced by 13% with the proposed method, 

and the ITAE with 10% packet losses, by 30%. The NCS 

could track the reference command faithfully with the 

proposed method when random time delays and packet 

losses existed in the links whereas the NCS failed to 

track the reference command with a conventional control 

algorithm. 
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