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A B S T R A C T   

In multi-axis motion control, cross-axis couplings cause error force and position disturbances in an axis when a 
desired motion is generated along another axis. Different from the parasitic errors that result from the imper-
fections of the mechanical bearings and reference surfaces, cross-axis perturbations are caused by errors that 
occur both statically (geometrical errors) and dynamically (in the transient responses) and are more prevalent in 
air-bearing and magnetic-levitation (maglev) stages. The parasitic errors are heavily dependent on the sizes of 
the stage’s mechanical components, while the cross-axis perturbations depend significantly on the mover’s speed 
and acceleration. For stages using permanent magnets (PMs) and Lorentz coils, the causes of off-axis forces 
include 1) errors in the coil turns’ straightness, perpendicularity, and parallelism of the motor axes, and 2) errors 
in the local magnetizations and PMs’ fringing effects. The purpose of this paper is to analyze the topologies of 6- 
degree-of-freedom (6-DOF) single-moving-part stages to minimize cross-axis couplings. The outcome is a stage 
configuration with reduced couplings and cross-axis perturbations. This is supported by experimental results 
performed on a newly developed 6-DOF maglev laser-interferometer stage. Its achieved root-mean-square (rms) 
positioning noise and minimum step size in XY are 3 nm and 10 nm, respectively. Its achieved resolution in out- 
of-plane rotations is 0.1 μrad. In addition to the analysis supported by these results, this paper introduces a new 
measure to represent cross-axis perturbations and to compare the effects of couplings in multi-axis positioning. 
This measure is entitled the cross-coupling quantity (CCQ) and calculated from the displacement of the stage in 
the axis of interest, the peak time of the response, and the peak-to-peak (p-p) error in the perturbed axis.   

1. Introduction 

In multi-axis positioning, single-moving-part stages are the ones that 
have only one moving part performing the motions in all the possible 
axes [1,2]. A key advantage of these stages compared with 
multiple-moving-part motion systems, such as gantry stages and artic-
ulated robotic arms, is the avoidance of cumulative position errors due 
to the mechanical tolerances and errors at the bearings and joints. For 
single-moving-part motion stages, the mechanical components include 
1) a moving platen, 2) the base, 3) actuators, and 4) bearings. Given that 
each actuator or bearing of the stage is broken down to a mover and a 
stationary part, in a single-moving-part stage the movers of all the ac-
tuators and bearings are rigidly assembled to the single moving platen. 
In most cases, rotational motions, either in-plane (XY) or out-of-plane, 
are realized by two actuators generating parallel forces in opposite di-
rections [1‒4]. For multi-axis nano-precision stages with 

millimeter-order strokes in XY, Lorentz coils have been used due to the 
need for non-contact force generation, and their linear force model fa-
cilitates the real-time feedback control [1‒4]. Common design config-
urations for 6-DOF single-moving-part stages are a square [3], cross [4], 
and triangle [1], as illustrated in Fig. 1. The movers can be either PMs 
(coils are in the base) or coils (PMs are in the base). Here, 1 is the base, 2 
is the single moving platen, and 3 is the moving part of the actuators or 
magnetic bearings. 

The precision stages’ performance specifications include settling 
time for a given displacement and velocity, rms positioning noise, po-
sition resolution, position accuracy, maximum speed and acceleration, 
load capability, and parasitic errors—the position error in one axis when 
the stage performs a full-stroke motion in another axis. In stages with 
mechanical bearings, the friction induced by cross-coupling forces 
normal to the bearing surfaces is a disturbance that degrades the posi-
tioning performance. The efforts on minimizing the parasitic errors in 
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multi-axis positioning, however, have been reported mainly for flexure 
structures [5‒8]. With rapid developments in semiconductor 
manufacturing, additive manufacturing, and microscopy, the re-
quirements of motion stages have constantly increased [9‒14]. Together 
with the nanoscale precision and multi-DOF positioning capability, the 
required travel ranges for the above applications are exceeding the 
capability of flexure stages. With 6-DOF single-moving-part stages using 
magnetic or air bearings, the position error in one axis over the travel 
range of another axis depends not only on bearings and reference sur-
faces but also on the loads and control performance. Here, instead of the 
static parasitic errors, it is more relevant to consider the cross-axis 
perturbation, which is the position fluctuation of one axis (perturbed 
axis) when a desired motion is generated in another axis (primary axis). 
Results with cross-axis perturbations were reported in [1,4,15‒17]. 

Within a short displacement range, the cross-axis perturbations 
depend on the transient-response characteristics of the motion in the 
primary axis and its dynamic couplings with the perturbed axes. The 
main cause of cross-axis perturbations is the off-axis error forces or 
torques. These errors result from the (static and dynamic) couplings 
between multiple actuators of the same stage. The causes for off-axis 
error forces include 1) geometrical errors (perpendicularity and paral-
lelism between the actuators’ axes, straightness of Lorentz coils’ turns, 
etc.), 2) couplings between the axes due to the actuators’ structure (PMs’ 
fringing effect, coils’ end effect, etc.), 3) errors in the coil currents, and 
4) other errors including coil fill factor and PMs’ remanence. In case 
there are two actuators that are supposed to produce two equal forces in 
the same direction, the errors from the current amplifiers result in a 
difference in these forces, and thereby, an error torque. In this paper an 
on-axis force error is defined as the difference between the actual force 
generated by a single actuator along its main axis and the desired force 
to be generated in that axis. The causes 3) and 4) mentioned above 
produce this error. An off-axis error force is the undesired force gener-
ated in another axis (due to the causes of 1) and 2) above) when an 
actuator produces a desired force in its main axis. 

The cross-axis coupling between x and y, for example, is the corre-
lation in which a motion of the mover in x (primary axis) induces some 
undesired fluctuations in y (perturbed axis). The cross-axis coupling 
herein encompasses the static coupling, which originates from the static 
geometric errors, and the dynamic coupling that appears dynamically. 
The cross-axis perturbation caused by the underlying coupling 
mentioned above is the position profile (displacement versus time) 
along the perturbed axis. When mentioning a cross-axis perturbation, it 
has to be accompanied by the characteristics of the primary axis’ motion 
(displacement, and speed, acceleration, or settling time) to reflect the 
cause of the perturbation. Introducing the CCQ as in this paper is an 
effective way to incorporate the characteristics of both the cross-axis 
perturbation and the primary axis’ motion into a single parameter that 
can be used to compare the coupling levels. 

Although leading to position errors and possibly system instability, 
the off-axis error forces and dynamic couplings in nano-precision multi- 
axis positioning have not yet been extensively investigated. Conven-
tional methods in reported works mainly discussed the static errors and 
couplings, in which the off-axis errors were due to 1) mechanical 

bearings’ imperfections and 2) the structural properties of flexures. The 
static coupling is an intrinsic property of a motion system; it shows up 
even when the power and control are turned off. The dynamic couplings, 
on the other hand, are present in the transient responses. Generally the 
static parasitic errors are larger with a larger motion range. The cross- 
axis perturbations, on the other hand, are larger with a higher motion 
speed and acceleration. The static analysis using parasitic errors, 
therefore, is inadequate to study the cross-axis perturbations caused by 
the errors that occur both statically and dynamically. For air-bearing 
and maglev stages, the concept of parasitic errors needs to be 
augmented to handle the cross-axis perturbations in transient responses. 

The focuses of most reported works in maglev-system design and 
testing were mainly on the modeling and control of certain structures 
[1‒3,16‒18]. Besides, why a design configuration was selected was 
usually not well justified. Maglev and air-bearing stages with a single 
moving part have been reported with the capability to perform 6-DOF 
motion control with high precision [1,2]. However, challenges still 
remain in dealing with the off-axis error forces affecting the control 
performance in multi-DOFs at the scales of nanometers and 
micro-radians. No method has been established to evaluate the effect of 
cross-axis couplings in multi-axis transient responses, and no measure 
has been proposed to standardize the comparisons of the cross-axis 
perturbations. 

This paper presents an analysis to quantify the effects of cross-axis 
couplings and compare those effects between the design topologies of 
multi-axis stages. The actuator of interest in this case is of Lorentz-force 
type, which has been commonly used for 6-DOF single-moving-part 
stages with a long XY stroke [1‒4,15,16,18]. With a 6-DOF 
single-moving-part stage broken into its basic units (each is a 
Lorentz-force actuator), a bounded off-axis error force is assumed for 
each actuator. The effect of cross-axis couplings in the system model 
used for feedback control is quantified by the norm of the transformation 
matrix between the closed-loop control efforts and the coil currents. In 
Fig. 1, the actuator units of the three stages are assumed to have the 
same size and force-generation capability. Each actuator generates two 
orthogonal forces, one in the horizontal and the other in the vertical 
direction. The distance from the horizontal axis of symmetry of each 
actuator to the central vertical axis of the entire moving part, about 
which the torque is calculated, is the same, l. The off-axis error-force 
bounds of all the actuators are assumed to be the same. The question of 
interest is which design in Fig. 1 has the least cross-axis coupling. To 
answer this we establish a correlation between the bounded errors at the 
individual actuators and the variation ranges of the coil currents 
computed from the closed-loop control efforts. This in turn maps the 
magnitude of the bounded errors at the individual actuators to the 
variations of the applied forces needed for closed-loop control. Such a 
method, unattempted yet in the literature, allows for the topological 
analysis to tell which design configuration is best suited for a particular 
application. 

Key contributions of this paper include 1) a multidisciplinary anal-
ysis on the sources of errors in multi-axis positioning, and 2) a method 
for quantitatively studying the effects of cross-axis couplings on the 
dynamics of single-moving-part stages. The topological analysis 

Fig. 1. The three configurations for single-moving-part stages, a) square, b) cross, and c) triangle.  
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presented herein helps evaluate the degrees of cross-axis couplings 
produced by the errors at the individual actuators in three stage con-
figurations—triangular, cross, and square. This analysis is supported by 
a) experimental results from a 6-DOF maglev stage with a nanoscale and 
sub-micro-radian precision, and b) the comparisons between our stage’s 
performances and those from existing works. In addition to these con-
tributions, this paper establishes a measure for the performance com-
parisons between multi-axis stages. For the same step size in the primary 
axis, a higher speed and acceleration lead to larger perturbations in 
other axes. Therefore, to represent the couplings in multi-axis posi-
tioning, we incorporate the peak time of the step response and the ratio 
between the perturbed axis’s p-p fluctuation and the primary axis’ step 
size into a measure named the CCQ. Our experimental results with CCQ 
values are provided as a benchmark. Fig. 2 is a photograph of the 
experimental setup. The stage’s travel range in XY with a nanoscale 
positioning resolution is 56 mm � 35 mm, limited by the size of the 
precision mirrors attached to the platen. The travel ranges in the vertical 
axis, rotations about the vertical axis, and out-of-plane rotations are, 
respectively, 40 μm, 3.72 mrad, and 0.52 mrad. 

Section 2 of this paper discusses the design considerations for 6-DOF 
maglev stages with a nanoscale precision. Section 3 provides the anal-
ysis of stage configurations to determine how the cross-axis couplings 
introduce errors into the system dynamics. Section 4 presents experi-
mental results to support the findings in Section 3. The conclusions are 
given in Section 5. 

2. Design considerations for 6-DOF stages with long strokes in 
XY 

2.1. Noise, force density, and moving Part’s mass 

In Ref. [19], Gu and Kim provided a detailed analysis on the quan-
tification of the noise contributions from various sources including 
ground vibration, electronics noise, and the quantification noises from 
analog-to-digital converters (ADCs) and digital-to-analog converters 
(DACs). A noise propagation model was used to predict the noise level at 
various crossover frequencies and select the optimal control bandwidth 
[19]. In control system design, the effect of sensing noise on control 
performance leading to the selection of low-pass-filter corner fre-
quencies, sampling rates, and closed-loop control bandwidths has been 
thoroughly studied [20‒22]. With the same sensing noise and load, 
actuators with a higher force density need a lower loop-gain magnitude, 
resulting in a lower control bandwidth and output noise. For maglev 
stages with the same sensing noise and force-generation capability, the 
moving part with a smaller mass requires a smaller loop-gain magnitude 
to levitate the mover, and therefore leaves a larger amount of force to 
accelerate it in the lateral directions. 

2.2. Magnet structures 

For multi-axis stages with a single moving part, spatially periodic 
planar magnet arrays or matrices and Lorentz coils could allocate the 
forces in 6 DOFs [4,15]. With flexures, one could only realize up to 

3-DOF motions with long travel ranges in xy [6‒8]. A linear or planar 
magnet array is a PM structure with the magnets’ magnetization di-
rections periodically repeated in one dimension, usually along the 
structure’s length [23]. At a certain point close to the array’s surface and 
sufficiently far from its edges, there are two magnetic flux-density 
components, one normal to the array’s surface, and the other along its 
length. Illustrated in Fig. 3 is a linear Halbach array, which strengthens 
the fundamental component of the magnetic flux-density in one side 
(positive-z) and cancels that in the other side of the structure. Halbach 
arrays are highly applicable in electric machines with a precise force 
model and a high force density [23]. A planar magnet matrix is a 
structure with the magnetization directions periodically repeated over 
two dimensions [15]. At a point close to the magnet matrix’s surface, 
there are three magnetic flux-density components. In Refs. [15,24], only 
one planar magnet matrix was used with Lorentz coils for multi-axis 
long-stroke planar positioning with a single moving part. The magnet 
matrix as used in Refs. [15,24] was a superimposition of two single-axis 
linear Halbach arrays, one in x and the other in y. 

2.3. The stage as a group of actuators, each produces two force 
components 

In the open space near a magnet array as mentioned in Section 2.2, 
with two spatially periodic flux-density components, there must be two 
orthogonal forces generated by a current in a planar coil, one normal to 
the magnet array’s surface and the other in the lateral direction. For a 
single coil, these forces are coupled and position-dependent. To make 
the normal and lateral forces independent, at least two coils must be 
grouped and energized simultaneously. Dividing the total number of 
coils of the actuation system into spatially separated groups helps 1) 
allocate certain groups of coils to the actuation along each axis, and 2) 
allow for the multi-DOF system modeling with the torques calculated 
from the distances between the geometrical centers of the groups and 
the symmetry axis of the entire moving part. Splitting into groups of 
coils, each generating two independent forces, also facilitates the control 
design and implementation. 

A group of coils working with the associated magnet array as 
mentioned above is named a forcer, a single actuator, or motor. In 
Ref. [15], the 6-axis stage consisted of three motors with three groups of 
coils attached to the moving platen; each group had 12 Lorentz coils. In 
Ref. [4], the 6-DOF stage was actuated by four motors with four linear 
Halbach arrays fixed to the moving part; each magnet array contained 
12 magnet bars. To reduce modeling errors, each group of coils or a 
magnet array on the moving part must be sufficiently compact in the 
horizontal directions. This helps reduce the position variation of the 
equivalent Lorentz force’s acting point. To facilitate the theoretical 
decoupling of the 6 control axes, the groups of planar coils or magnets on 
the moving part must be sufficiently separated. However, if they are 
relatively far from each other, the large size of the moving part makes it 
either heavier or less structurally rigid. 

Fig. 2. Photograph of the 6-DOF maglev stage to support the analysis in 
this work. 

Fig. 3. Illustration of a linear Halbach array with the flux density components 
in x and z. 
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2.4. Error from the power amplifier circuits 

A current amplifier unit contains a power operational amplifier (Op 
Amp) and at least one small-signal Op Amp for signal conditioning. Its 
input is the DAC signal commanded by the processing unit where the 
control routine is executed, and its output is the coil current. The 
amplifier itself adds noise and nonlinearity to the output currents, and, 
therefore, the motion system’s dynamics. With a sufficiently high 
bandwidth of the amplifier, its dynamics is significantly faster than that 
of the motion stages and can be neglected in control design. However, 
the cost to pay for a higher bandwidth is a lower gain, leading to a larger 
input voltage swing. With the same DAC bit length, a larger voltage 
swing worsens the minimum incremental current generated by the 
amplifier. 

On top of the noise introduced by the DC power supply, there are 
errors of the power amplifiers, including constant DC drifts, non-
linearities, and errors associated with the variations of electronic com-
ponents’ properties. Calibration can be done to compensate for or to 
eliminate the DC drifts. The other errors, however, cannot be avoided. At 
the milliampere scale, these errors introduce input uncertainties into the 
control system, limiting the positioning performance at the nanoscale. 
Table 1 lists the desired currents, measured currents’ standard deviation 
(std), and p-p errors generated by 8 Lorentz coils, each with 0.19-Ω 
resistance and 59-μH inductance. The power Op Amp used herein is the 
APEX PA12A. The tolerance of the resistors in the power amplifiers is 
1%. There is a closed-loop circuit to ensure that the desired output 
current is independent of the load characteristics at low frequencies. 
Table 1’s data show that the amplifiers to provide the control inputs for 
the system are a significant source of error. Adding more coils and using 
a larger number of amplifiers, therefore, introduce more noises and er-
rors to the system. 

2.5. Coil ends and straightness 

In long XY-stroke motion systems with planar magnet arrays and 
Lorentz coils, where the surfaces of coils and PMs are placed in parallel 
and close to each other to generate thrust or levitating forces, the shorter 
or narrower one among the two introduces its end effects to the system 
dynamics. In moving-magnet designs [2,18], where the PMs move in a 
space covered by the stationary coil arrays, their end effects present. In 
the stages with Lorentz coils moving on top of a larger magnet matrix 
[15,24], the coil ends’ effects are present. In both cases, model un-
certainties and force disturbances are introduced to the system 
dynamics. 

Practically, long magnets or coils are desired so that the coil end or 
PM’s fringing effects can be relatively small compared to the forces 
generated by the PM’s or coil’s main volume. For short coils the ratio 
between the end volume and total coil volume can be up to 43% [4]. 
Although the forces generated by the coil ends intersecting with a Hal-
bach array could be quantified, these added nonlinearities into the 
system model, making it non-ideal for real-time feedback control. In 

addition, the wire turns curving around the corners made the coil sides 
not perfectly straight because the coil corners were not sufficiently far 
from each other. Below is an example where the straightness of the coil 
sides in Fig. 4(b) is significantly better than that in Fig. 4(a). This 
imperfection of the wire turn’s straightness went into the system 
modeling error because the coils’ sides were assumed to be ideally 
straight for the analytical Lorentz-force calculation. 

One has to deal with either PM’s fringing or coils’ end effects in any 
design. The PMs’ fringing effects depend heavily on their size, shape, 
and magnetization properties, of which the availability of the geome-
tries and the variation of magnetic properties in individual parts are 
usually beyond the designers’ control. In contrast, for Lorentz coils, the 
designers have full control of the coils’ geometry and uniformity. Their 
shorter ends, which are not effective for force generation, can be bent 
away to be further from the PMs to minimize the undesired end effects. 

2.6. Summary of design considerations 

The discussions in this Section together with the data shown in 
Table 2 suggest that a reduced number of coils, a high force density, and 
a light moving part are needed for an ultraprecise stage. The multi-axis 
stages with a long XY-stroke and a single moving part consist of planar 
magnet arrays and Lorentz coil arrays, which are locally separated into 
forcers. Each forcer generates two independent and orthogonal forces. 
However, how to arrange the forcers in the moving platen to minimize 
cross-axis couplings still remains a question. This is addressed in Section 
3. 

3. Cross-axis coupling analysis 

3.1. Qualitative analysis 

For a triangular design as in Fig. 5 to generate a force in x, motor 2 
needs to generate a force in x, F2x, while motors 1 and 3 need to produce 
two opposite forces in y to balance the torque about the vertical axis 
generated by F2x [15,24]. Totally three motors must be energized, and 
the currents in the motors 1 and 3 must be calculated based on F2x so that 
the net torque about the vertical axis is ideally zero. In practice, due to 
the power amplifiers’ nonlinearity and errors in the motor’s geometry, 
errors are present. Feedback control helps reduce the effects of the errors 
on the positioning performance. However, for the achieved rms posi-
tioning noises on the order of nanometers and sub-microradians, mini-
mizing the net errors of forces and torques must be planned early in the 
design phase. Considering each motor a source of bounded error, using 

Table 1 
Desired electric currents and measured currents with a set of 8 coils.  

Average desired current 
(mA) 

4.29 12.62 107.74 213.40 424.80 

std of measured currents 
(mA) 

4.79 4.82 5.60 7.09 10.93 

Ratio between std of 
measured and desired 
currents 

111.8% 38.2% 5.2% 3.3% 2.6% 

p-p of measured currents 
(mA) 

14.49 14.46 14.90 19.20 30.20 

Ratio between p-p of 
measured and desired 
currents 

338.0% 114.6% 13.8% 9.0% 7.1%  

Fig. 4. 3-D rendering of the Lorentz coils used in 6-DOF maglev systems, (a) in 
Ref. [1], and (b) in Ref. [25]. 
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two motors instead of three (to actuate the platen along a certain axis) 
reduces the net error. 

For the square stage in Fig. 6, if a torque needs to be generated about 
the x-axis passing through the mover’s geometric center, and, at the 
same time, a force needs to be produced in x, both two motors 1 and 3 
must be energized. However, when motors 1 and 3 generate two forces 
in the opposite directions along z, they produce an undesired error 
torque about the y-axis. To cancel this error, motors 2 and 4 must be 
energized. Totally 4 motors must be energized in this case. 

With the cross design as in Fig. 7, two motors 2 and 4, are sufficient 
to actuate the mover along the x-axis and, at the same time, generate an 
out-of-plane torque about this axis. For the square design in Fig. 6, the 
difference between F1z and F3z creates a toque about both x and y. For 
the cross layout in Fig. 7, the difference between the vertical forces F2z 
and F4z produces a desired toque about x. They, however, only generate 
a negligible error torque about y because the ideal acting points of the 
forces at motors 2 and 4 are aligned in the y-axis. In this case the width 

along x of the actuators 2 and 4 must be properly designed so that the 
acting points of the equivalent z-axis forces are confined in a smallest 
possible distance to y. 

Fig. 8 shows a triangular design with three forcers arranged in a Y 
shape [1]. Assuming that each forcer used for the designs in Figs. 5 and 8 
generates the same maximum force, Fmax in the XY plane, the maximum 
forces in x and y that the stage in Fig. 5 can produce are Fmax and 2Fmax, 
respectively. These maximum forces, for the stage in Fig. 8 with α ¼ π/6 
rad, are 2Fmax and 

ffiffiffi
3
p

Fmax. 

3.2. Quantitative analysis 

3.2.1. Analysis of cross-coupling in 6-DOF planar stages using Halbach 
arrays and Lorentz coils 

In this analysis, Ft is the vector consisting of the total Lorentz forces 
and torques acting on the moving part of a 6-DOF stage as in Fig. 6‒8. 
The design in Fig. 8, not Fig. 5, is selected to be compared with those in 
Figs. 6 and 7 because the Y-shape design in Fig. 8 is in symmetry, as with 
the square and cross designs, and the maximum forces it can produce in 
x and y are close, not far off as with the design in Fig. 5. 

Ft ¼
�
Fx Fy Tz Tx Ty Fz

�T (1) 

Fa is the vector consisting of the force components generated by the 
individual actuators that constitute the 6-DOF stage. With the square, 
cross, and triangular designs in Fig. 6‒8, Fa is as follows, respectively. 

Fa square ¼
�
F1x F1z F2y F2z F3x F3z F4y F4z

�T (2)  

Fa cross ¼
�
F1y F1z F2x F2z F3y F3z F4x F4z

�T (3)  

Fa triangular ¼ ½F1h F1z F2h F2z F3h F3z�
T (4) 

Table 2 
Coil numbers, platen weights, and the achieved rms positioning noises in re-
ported works.   

Number of 
coils 

Moving 
part’s mass 

RMS noise 
(closed-loop 
control) 

Design 
configuration 

Verma et al., 
2006 [1], 

6 0.27 kg 3 nm Triangle, moving 
magnets 

Hu and Kim, 
2006 [15], 

36 5.91 kg 8 nm Triangle, moving 
coils 

Zhu et al., 
2016 [4], 

60 Not 
reported 

50 nm Cross, moving 
magnets 

Jansen et al., 
2007 [18], 

24/84 8.20 kg 100 nm Square, moving 
magnets  

Fig. 5. Layout of a triangular-configuration planar-stage design [15,24].  

Fig. 6. Layout of a square-configuration planar stage design [3].  

Fig. 7. Layout of a cross-configuration planar stage design.  

Fig. 8. Layout of a triangular planar stage design [1].  
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Here, Fju is the Lorentz force component generated by the actuator 
numbered j along the u-axis. In case of the triangular design, Fjh is the 
Lorentz force produced by actuator j in the horizontal plane. The rela-
tion between Ft and Fa is  

Ft ¼AFa: (5)  

Here, A is the constant-element matrix in Eqs. (6)–(8). Assumptions for 
this analysis are 1) the mover’s center of mass is its geometric center in 
the XY plane, 2) each actuator generates two independent and orthog-
onal forces with the acting point at its geometric center seen in the XY 
plane, 3) the gap between the planar coils and the PMs’ surface is con-
stant, and 4) for all the actuators the distance to calculate the torque 
about the mover’s vertical axis of symmetry is the same, l. This is to 
guarantee that an actuator can generate the same torque about the 
mover’s vertical symmetric axis regardless of the design in which it is 
utilized. In Eq. (8), α ¼ π/6 rad for the design in Fig. 8 and α ¼ 0 for the 
one in Fig. 5. 

Asquare ¼

2

6
6
6
6
6
6
4

1 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0
� l 0 � l 0 l 0 l 0
0 � l 0 l 0 l 0 � l
0 � l 0 � l 0 l 0 l
0 1 0 1 0 1 0 1

3

7
7
7
7
7
7
5

(6)  

Across ¼

2

6
6
6
6
6
6
4

0 0 1 0 0 0 1 0
1 0 0 0 1 0 0 0
l 0 � l 0 � l 0 l 0
0 0 0 l 0 0 0 � l
0 � l 0 0 0 l 0 0
0 1 0 1 0 1 0 1

3

7
7
7
7
7
7
5

(7)  

Atr ¼

2

6
6
6
6
6
6
4

� sin α 0 � sin α 0 1 0
cos α 0 � cos α 0 0 0

l 0 l 0 l 0
0 l sin α 0 l sin α 0 � l
0 � l cos α 0 l cos α 0 0
0 1 0 1 0 1

3

7
7
7
7
7
7
5

(8) 

Due to the sinusoidal variation of the magnetic-flux density in one 
direction on the horizontal plane of the linear Halbach array, the total 
Lorentz-force vector produced by the planar Lorentz actuators, each 
with either 3-phase coils [3,15] or 2-phase coils [24], is expressed as 

Fa¼ kSi; (9)  

where i is the coil current vector. Here, k is a constant depending on the 
peak magnetization of the magnets used to form the linear Halbach 
array, the array’s spatial pitch and thickness, the coils’ geometry, and 
the coil-magnet gap [3,15,24]. The constant k represents the actuator’s 
force density for levitation and thrust. With the same actuator structure 
and magnet-coil gap, in this analysis the same constant k is assumed for 
all three designs in Figs. 6–8. The S matrix represents the 
position-dependent components of the current-force transformation. For 
the square and cross designs, S is a 8 � 8 matrix and i is a 8 � 1 vector. 
For the triangular designs S is 6 � 6 and i is 6 � 1. The derivations of k 
and S for a triangular design and a cross one can be found in Chapter IV 
of [26] and Chapter III of [27], respectively. The matrix S is formed by 
blocks of 2 � 2 rotational-transformation matrices in its diagonal. S is, 
therefore, orthogonal (S� 1 ¼ ST). This is the key advantage of the 
Lorentz-force actuators using a Halbach array. This allows for the cur-
rents to be calculated from the control efforts of the stage’s controller 
without computing S� 1 in real time. 

To derive a linear model for the 6-DOF planar stage, Eq. (5) and B, 
the pseudoinverse of the constant-element matrix A, are used. The 
control effort vector, U, is introduced by Fa ¼ kBU, where 
U ¼ ½ux uy uθz uθx uθy uz�

T . Each element of U is the decoupled control 
effort in one axis of the stage. Substituting Fa ¼ kBU into Ft ¼ AFa 

yields Ft ¼ kU. From this and Ft ¼ M€p (pure-mass model assumed), 
where M is the 6 � 6 mass matrix and p is the 6 � 1 position vector of the 
mover, the system model is formed as M€p ¼ kU. 

With C(s) being the 6 � 1 vector of decoupled controllers in 6 axes, 
one has UðsÞ ¼ CðsÞEðsÞ, where EðsÞ represents the Laplace transform of 
the position-feedback error e(t). The control efforts in U are calculated 
based on the implemented feedback-controller structure. The coil cur-
rents are calculated based on Eq. (9) and Fa ¼ kBU. This gives 

i¼ST BU: (10) 

Because ST is orthogonal, we have jjSTBjj2 ¼ jjBjj2. Therefore, jjBjj2 
represents the magnitude of the current vector i depending on the 
control effort vector U. In practice, when a cross-axis error force or 
torque occurs, the corresponding elements of the A matrix in Eq. (6‒8) 
should be changed to reflect the error. With the cross-axis error forces, 
the accordingly-varied B should be the one that yields the accurate 
values of the coil currents to guarantee the desired performance of the 
designed controllers. However, practically only the constant-element 
(and nominal) B is used in real-time control. Therefore, there is an 
error between the calculated current vector (from the fixed B) and the 
desired current vector that should be computed by the varied B. With the 
same cross-axis error-force bound, it is, therefore, worth to estimate the 
variation range of jjBjj2 so that the variation of the magnitude of the coil 
current vector can be evaluated. Specifically, the envelope of jjBvariedjj2=

jjBnominaljj2 should be compared among the designs. 

3.2.2. Cross-axis coupling analysis for out-of-plane dynamics 
Assuming that the motor 1 generating a force F1x in x has an error 

force in z of ΔFz ¼ ε1xzF1x, where jε1xzj is bounded by ε, the matrices of A 
as in Eq. (6‒8) are changed as follows. 

Asquare varried ¼

2

6
6
6
6
6
6
4

1 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0
� l 0 � l 0 l 0 l 0
� ε1xzl � l ε2yzl l ε3xzl l � ε4yzl � l
� ε1xzl � l � ε2yzl � l ε3xzl l ε4yzl l

ε1xz 1 ε2yz 1 ε3xz 1 ε4yz 1

3

7
7
7
7
7
7
5

(11)  

Across varied ¼

2

6
6
6
6
6
6
4

0 0 1 0 0 0 1 0
1 0 0 0 1 0 0 0
l 0 � l 0 � l 0 l 0
0 0 ε2xzl l 0 0 � ε4xzl � l
� ε1yzl � l 0 0 ε3yzl l 0 0

ε1yz 1 ε2xz 1 ε3yz 1 ε4xz 1

3

7
7
7
7
7
7
5

(12)  

Atr varied ¼

2

6
6
6
6
6
6
4

� sin α 0 � sin α 0 1 0
cos α 0 � cos α 0 0 0

l 0 l 0 l 0
ε1hzl sin α l sin α ε1hzl sin α l sin α � ε3hzl � l
� ε1hzl cos α � l cos α ε2hzl cos α l cos α 0 0

ε1hz 1 ε2hz 1 ε3hz 1

3

7
7
7
7
7
7
5

(13) 

It is noticed that 1=jjBjj2 is the lower bound of jjAjj2, and, therefore, is 
a continuous function on the open set of the matrix elements [28]. Given 
the fact that εjuv varies in ½ � ε ; ε�, this discussion is not aimed at deriving 
a rigorous analysis to constrain jjBjj2 but providing an estimate of the 
envelope of the ratio between the 2-norm of the varied B (calculated 
from the varied A in Eq. (11‒13)), and that of the nominal B (from the 
nominal A in Eq. (6‒8)). This is accomplished by computing the ratio of 
jjBvariedjj2=jjBnominaljj2 with all the elements of εjuv switched between 
evenly distributed values in ½ � ε ; ε�. With l ¼ 0.1 m and ε 2 [0.01, 0.22], 
the envelopes of this ratio for all three designs are plotted in Fig. 9. It is 
seen that the triangular configuration has the narrowest envelope and 
the square configuration has the largest one. 
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3.2.3. Force-error analysis for in-plane dynamics 
The force error considered here is the difference between the actual 

force generated by an actuator and the desired force to be generated in 
the same axis at the same time. The force error herein can be a static or 
dynamic one. The static force error is due to the coil fill factor, the ac-
tuator’s geometrical errors, and errors in the PMs’ magnetizations. The 
causes of the dynamic errors, which mainly occur in the transient re-
sponses of the system, include actuator saturation, current-amplitude 
errors, and currents’ phase lag. This lag is due to not only the slew 
rate but also the phase change in the power-electronic dynamics at high 
frequencies. In addition, the dynamic errors in the actuators’ forces 
during transient motions can be caused by the error angle between the 
moving platen and the stationary array of magnets or coils (the force 
calculation is made with the assumption that the magnet and coil arrays 
are perfectly aligned). The force errors in the stage’s in-plane dynamics 
become dominant when the mover performs high-acceleration motions, 
or is subject to a large and off-center load, an impact, or strong 
vibrations. 

For the in-plane dynamics of x, y, and the rotation about the vertical 
axis, the corresponding A matrix can be reduced from Eq. (11‒13). 

Asquare inplane ¼

2

4
1 0 1 0
0 1 0 1
� l � l l l

3

5 (14)  

Across inplane ¼

2

4
0 1 0 1
1 0 1 0
l � l � l l

3

5 (15)  

Atr inplane ¼

2

4
� sin α � sin α 1
cos α � cos α 0

l l l

3

5 (16) 

We consider the case when each Lorentz force component in XY has a 
force error, where the actual force component is F1x(1þε1x). Here F1x is 
the desired Lorentz force to be generated by actuator 1 in x, and jε1xj is 
bounded by ε. The forces generated by the actuators are combined to 
drive the moving platen in one axis and minimize the position fluctua-
tions in the other axes, all in closed-loop control. A force error at one 
actuator, therefore, requires other actuators to respond accordingly to 
compensate for this error. The A matrices with the force errors in x and y 
for the three design configurations mentioned above are 

Asquare varied ¼

2

4
1þ ε1x 0 1þ ε3x 0

0 1þ ε2y 0 1þ ε4y
� lð1þ ε1xÞ � l

�
1þ ε2y

�
lð1þ ε3xÞ l

�
1þ ε4y

�

3

5; (17)  

Across varied ¼

2

4
0 1þ ε2x 0 1þ ε4x

1þ ε1y 0 1þ ε3y 0
l
�
1þ ε1y

�
� lð1þ ε2xÞ � l

�
1þ ε3y

�
lð1þ ε4xÞ

3

5; (18)  

Atr varied ¼

2

4
� ð1þ ε1hÞsin α � ð1þ ε2hÞsin α 1þ ε3h
ð1þ ε1hÞcos α � ð1þ ε2hÞcos α 0

lð1þ ε1hÞ lð1þ ε2hÞ lð1þ ε3hÞ

3

5: (19) 

Fig. 10 gives the envelopes of jjBjj2 for the A matrices in Eq. (17‒19) 
in case one actuator of the associated system has a bounded force error 
specified by ε 2 [0.01, 0.22]. For the in-plane dynamics, the envelopes 
for the square and cross designs are the same and smaller than that of the 
triangular one. This indicates that the effect of the actuators’ force errors 
on the triangular design is worse than that on the square and cross ones. 

In case a 6-DOF vibration-isolation stage is of interest (no need for 
high-speed motions in XY), this analysis suggests that the triangular one 
is the choice. If a long-stroke and high-speed stage is needed, where a 
compact mover is required and the out-of-plane dynamics is not a 
concern, the square design is the selection. If a long-stroke and high- 
speed stage is needed, where the mover is magnetically levitated by 
Lorentz forces, the cross design helps reduce the effects of the off-axis 
error forces on the out-of-plane dynamics and the XY force errors on 
the in-plane dynamics. 

3.3. The cross-coupling quantity 

The objective of proposing the CCQ in this paper is to introduce, for 
the first time, a quantity that represents the degree of cross-axis cou-
plings in the transient responses of multi-axis stages. The reported works 
in the literature were all with different command profiles, leaving a 
challenge for comparing the levels of cross-axis couplings in the stages 
[4,16,17,27]. There may not be a unique measure that can be univer-
sally used for all the cases. Depending on the priority in particular ap-
plications, one may put another weighing factor in the CCQ formula for 
the comparisons. Here, we introduce a simple CCQ formula and our 
experimental results as a benchmark so that, based on this, further 
studies and comparisons will be conducted for other stage configura-
tions tailored for specific applications. 

Fig. 9. The envelope of jjBvariedjj2=jjBnominaljj2 for the out-of-plane dynamics.  

Fig. 10. The envelope of jjBvariedjj2=jjBnominaljj2 for the in-plane dynamics.  
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The CCQ is defined for each pair of a primary axis and a perturbed 
axis and calculated as the product of the transient response’s peak time 
in the primary axis and the ratio between the p-p fluctuation in the 
perturbed axis and the primary axis’ displacement. The CCQ between 
the perturbed axis of θz and the primary axis of θy is tpθz_pp/θy_d, where tp 
and θy_d are, respectively, the peak time of the response and the 
displacement along θy. The p-p position fluctuation in θz is θz_pp. 

The peak time is used to calculate the CCQ for three reasons. First, it 
takes into account the speed and acceleration of the primary axis’ mo-
tion. Second, the duration of the peak time is the window when the peak 
fluctuation in the perturbed axis is most likely to occur. Third, for a 
given plot of a response, the peak time can be estimated without the 
need of the raw data. The p-p perturbations, not rms position errors, are 
of interest because a large p-p position fluctuation in an interferometer 
stage may cause laser-signal loss, catastrophic instability, and maglev- 
mover touch down. This is critical for air-bearing and maglev stages 
because there is no mechanical surface to constrain the mover along the 
perturbed axes. The peak time or rise time in the perturbed axis is not 
included because these quantities are only well defined in the step re-
sponses along the primary axis. For maglev and air-bearing stages with a 
single moving part, the transient responses from which the CCQ are 
calculated are in closed-loop control. 

The unit of a CCQ depends on the type of motions, translational or 
rotational, in the primary and the perturbed axes. Table 3 provides the 
CCQ units in all possible combinations. A decrease in the CCQ implies a 
reduction and, therefore, an improvement in the cross-axis coupling. 

4. Experimental validation 

4.1. Design and fabrication of a cross-configuration 6-DOF maglev stage 

This part presents the design and fabrication of the moving platen of 
a cross-configuration moving-coil maglev stage. Its stationary part, a 
superimposed magnet matrix over which the single moving part devel-
oped herein moves, was previously constructed [15] and utilized [24]. 

Together with the cross configuration, a key feature that helps 
reduce the cross-axis couplings is the overlapped Lorentz coils to in-
crease the force density and reduce the spatial variations of the acting 
points of the equivalent vertical forces. In this design, a Lorentz forcer is 
a set of two Lorentz coils with one side of each coil placed in the space 
between the two sides of the other coil. The four sides of two coils are, 
therefore, evenly placed with a spacing of a quarter of the linear Halbach 
array’s pitch. The coils’ short sides, which are not effective for force 
generation, are bent and curved to be further away from the magnets’ 
surface. A tooling fixture was designed exclusively for the overlapped 
coils with the curved coil ends, as shown in Fig. 11. The copper wire used 
to make the coils is AWG 20 bondable magnet wire. A set of two over-
lapped coils weighs 51.3 g. The resistance and inductance of each coil 
are 0.19 Ω and 59 μH, respectively. The thickness of the coils is 2.54 mm, 
and the width of the coil sides is 9.65 mm. The effective length for 
Lorentz force generation of each side is 42.29 mm. 

The cross configuration’s layout with the above-mentioned over-
lapped coils and the 2-D Halbach matrix are depicted in Fig. 12. The 
magnetic field of the 2-D Halbach matrix formed by the superimposition 
of two single-axis linear Halbach arrays is illustrated in Fig. 13. Each 
pair of two overlapped coils with the sides along the x-axis generates two 
independent Lorentz forces, one in y and the other in z. Only the y and z 
flux-density components, which are sinusoidally varying in y and illus-
trated in the top left corner of Fig. 13, contribute to these Lorentz forces. 

With the same coil pair having the sides along x, the flux density com-
ponents that vary sinusoidally in x (bottom left corner of Fig. 13) pro-
duce net-zero Lorentz forces in y and z. This significantly simplifies the 
force model of the system because only the field solution for one linear 
Habach array, not the superimposed field of the magnet matrix, is used 
to compute the Lorentz force for each set of two coils. The use of the 
superimposed magnet matrix allows for a compact size of the overall 
structure relative to the travel range of the mover. The ratio between the 
maximum possible stroke in XY of the stage developed in this work and 
the size of its stationary magnet matrix is 0.50. The multi-axis stage with 
separated single-axis Halbach arrays reported in Ref. [2] had the load 
capability considerably larger than that of our stage presented in this 
paper. However, for the design in Ref. [2], the ratio between the 
maximum stroke in XY and the overall size of the stationary coil array 
was only 0.02. 

The assembly of the four coil pairs and the moving platen’s frame is 
depicted in Fig. 14. A photograph of the fully assembled moving part is 
given in Fig. 2. The size of the square platen’s frame is 142.5 mm �
142.5 mm, and the thickness of the moving part without the vertical- 
displacement laser sensors is 18.0 mm. The total mass of the stage’s 
single moving part is 0.750 kg and that of all 8 copper coils is 0.205 kg. 
After the assembly to the moving platen’s frame, the flat surfaces of the 4 
coil sets (one set is shown in Fig. 11) are aligned to form the bottom 
surface of the moving part. The nominal distance between this bottom 
surface of the moving part and the top surface of the magnet matrix is 
used in the derivation of the Lorentz forces [27]. The spatial pitch in 
each side, x and y, of the planar Halbach matrix used in this work is 50.8 

Table 3 
The CCQ units in all the combinations (T: translational, R: rotational)  

Primary axis T T R R 

Perturbed axis T R T R 
CCQ s rad⋅s/m m⋅s/rad s  

Fig. 11. An overlapped pair of coils wound in the tooling fixture.  

Fig. 12. The cross design with 4 pairs of coils working with a 2-D Halbach 
magnet matrix. 
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mm. The spacing between two nearby coil sides shown in Fig. 11 is 12.7 
mm. 

4.2. Multi-axis positioning performance 

The system modeling and proportional-integral-derivative (PID) 
controller design for this 6-DOF maglev stage can be found in Ref. [27]. 
Fig. 15(a) demonstrates two consecutive steps of 0.1 μrad in θx, the 
rotation about the x-axis as seen in Fig. 7. This is a record in the liter-
ature of 6-axis nanopositioning, indicating how quiet the motion system 
is. The average p-p positioning noise is 0.6 μrad and the achieved rms 
position noise is 0.1 μrad. Fig. 15(b) is the plot of two 10-nm steps in the 
x-axis. The rms position noise here is 3 nm. This is unprecedented for a 
6-DOF motion system with a single moving part and the XY strokes on 
the order of centimeters. 

Fig. 16 includes a step response of 1.5 μm in θy and the perturbations 
in all other 5 axes. Although being useful in showing the effects of cross- 
axis couplings in multi-axis positioning, results of this type were rarely 
found in the prior works on multi-DOF motion system design. The po-
sition fluctuations in other axes are within 60 nm in x, 20 nm in y, 0.4 
μrad in θz, and 40 nm in z, respectively. Table 4 shows the CCQ values 
between the perturbed axes and the primary axis of θy in the 1.5-μm step 
seen in Fig. 16. The CCQ between θx and θy in this case is negligibly 

small. 
Fig. 17 presents two consecutive step responses in the primary axis of 

θx and the associated perturbations in the other 5 axes. It is seen that the 
perturbations caused by the second step of 148 μrad in the primary axis 
are larger than those resulted from the first 148-μrad step. The reason is 
that the second step is performed in only 0.25 s after the first step is 
settled (at 13 s) in the primary axis. At 13.25 s the fluctuations in other 
axes caused by the first step of 148 μrad in θx are not completely 
attenuated. Table 5 contains the CCQ values between θx and the other 
axes in the two motion profiles in Fig. 17. The peak time of each 
response is 1.0 s. 

Fig. 18 shows two consecutive step responses of 2 μrad and � 4 μrad 
in θz and the perturbations in the other five axes. In this case, the po-
sition fluctuations in the perturbed axes caused by the first step response 
in the primary axis already settles down before the second step in θz is 
performed. In all of the perturbed axes, except for x, the p-p perturba-
tions due to the second step are larger than those of the first step. This is 
consistent with the fact that the step size along the primary axis in the 
second step is twice that of the first step. Table 6 provides the CCQ 
values between θz and the other axes in the two motion profiles seen in 
Fig. 18. The peak time of each response is 0.3 s. 

The two consecutive responses in Fig. 18 are further separated in 
time compared to those in Fig. 17. For the perturbations in Fig. 18, three 

Fig. 13. Illustration of the superimposition of two single-axis linear Halbach arrays to form a superimposed Halbach magnet matrix.  

Fig. 14. A 3-D rendering of the overlapped Lorentz coils attached to the 
moving part. 

Fig. 15. Minimum step sizes in (a) out-of-plane rotation and (b) in-plane 
translation. 
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of the CCQ values in the first and the second motion profiles are the 
same. This result suggests that in stepping motions of multi-axis maglev 
or air-bearing stages with a single moving part, the transient responses 
must be sufficiently separated in time so that the fluctuations in the first 
step can be attenuated before the second step is performed. 

Fig. 19 demonstrates a response with the step size of 2 μm in y and 
the position perturbations along the in-plane axes of x and θz. The peak 
time of the step response in y is 0.05 s. Table 7 lists the CCQ values 
between y and the other axes, x and θz. 

Fig. 20 plots a transient response with the displacement of 14 mm in 
x and the position perturbations along the in-plane axes of y and θz. The 
peak time of this position profile is 0.30 s. Table 8 gives the CCQ values 
between x and the other axes, y and θz. 

Only for the long-range motions of 148 μrad in θx and 14 mm in x 

reported in Figs. 17 and 20, respectively, command shaping with a 
trapezoidal velocity profile was used to make the motion smooth, 
reducing position fluctuations in the primary axis and perturbations in 
the other axes. Comparing the response in Fig. 16 (1.5 μrad in θy for 0.05 
s) with the first one in Fig. 17 (148 μrad in θx for 1 s), the trapezoidal- 
velocity command shaping helps make two of the CCQ values 

Fig. 16. A 1.5-μrad step motion in θy and perturbations in other axes.  

Table 4 
The CCQ values between θy and other axes in the 1.5-μrad step presented in 
Fig. 16.  

Axis x y θz θx z 

CCQ 0.0020 0.0005 0.0117 Negligible 0.0013 
Unit m⋅s/rad m⋅s/rad s s m⋅s/rad  

Fig. 17. A trapezoidal position profile of 148-μrad in θx and perturbations in 
other axes. 

Table 5 
The CCQ values between θx and other axes in the rotations of 148 μrad in Fig. 17.  

Axis x (nm) y (nm) θz 

(μrad) 
θy 

(μrad) 
z (μm) 

1st step’s p-p 
perturbation 

285 1015 1.20 1.50 3.45 

2nd step’s p-p 
perturbation 

1301 2037 2.24 3.00 5.49 

CCQ (1st step) 0.0019 0.0069 0.0081 0.0101 0.0233 
CCQ (2nd step) 0.0088 0.0138 0.0151 0.0203 0.0371 
CCQ unit m⋅s/ 

rad 
m⋅s/ 
rad 

s s m⋅s/ 
rad  
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(between x, θz, and the primary axis) for the 148-μrad profile better than 
those of the 1.5-μrad one. It is noticed that the average velocity in the 
148-μrad response is approximately 5 times that of the 1.5-μrad 
displacement. 

The CCQ values presented in Fig. 20 are significantly better than 
those shown in Fig. 19 although the former, performed with trapezoidal- 
velocity command shaping, has a step size of 14 mm, which is 7000 
times larger than that of the later. Their peak times are different by a 
factor of 6. This clearly demonstrates the positive effect of command 
shaping to reduce position errors in the transient responses of the motion 

stage. The perturbed fluctuation in y is provided in Fig. 21. 

4.3. Comparisons with existing experimental results in multi-axis 
positioning 

Fig. 14 of [16] reports a step response of 7 mm in x and y with the 
peak time of 0.1s, the p-p perturbations are 9.5 mrad in θz, and 4 mrad in 
θy. Compared with the CCQ of our 6-DOF maglev stage in Table 8, the 
CCQ between the primary axis and the out-of-plane rotation in Ref. [16] 
is 2.8 times larger, and that between the primary axis and the in-plane 
rotation in Ref. [16] is 46.8 times larger, as seen in Table 9. The 
design configuration in Ref. [16] is a triangular one. The effect of 
cross-axis couplings on the in-plane dynamics of this triangular stage is 
of a significantly greater concern compared to that of our 
cross-configuration design. This is consistent with our analysis in Sec-
tion 3 of this paper. 

Fig. 16(c) of [4] presents a translational motion of 30 mm in y, the 
primary axis. The rms position error in x is 8.6 μm, and the peak time in y 
is approximately 0.3 s. The CCQ between y and x is 90 μs. In our 
experimental result shown in Figs. 20 and 21, the rms position error in y 
is 2.4 μm, and the CCQ calculated from this response is 50 μs. Our result 
demonstrates the advantage of reducing the number of coils and using 
longer coils with better straightness to minimize the couplings. 

5. Conclusions 

The problem of cross-axis couplings is dominant in precision multi-
axis positioning. For motion stages with mechanical bearings, the cross- 

Fig. 18. Two steps, 2 and � 4 μrad, in θz and perturbations in other axes.  

Table 6 
The CCQ values between θz and other axes in the steps of 2 μrad and � 4 μrad in 
Fig. 18.  

Axis x (nm) y (nm) θx 

(μrad) 
θy 

(μrad) 
z (μm) 

1st step’s p-p 
perturbation 

50 37 0.40 0.50 0.02 

2nd step’s p-p 
perturbation 

17 74 0.80 1.00 0.06 

CCQ (1st step) 0.0075 0.0056 0.0600 0.0750 0.0030 
CCQ (2nd step) 0.0013 0.0056 0.0600 0.0750 0.0045 
CCQ unit m⋅s/ 

rad 
m⋅s/ 
rad 

s s m⋅s/ 
rad  

Fig. 19. A step motion of 2 μm in y and perturbations in x and θz.  

Table 7 
The CCQ values between y and other axes in the 2.0-μm step response in Fig. 19.  

Axis x (nm) θz (μrad) θy (μrad) 

p-p perturbation 127 2.3 3.0 
CCQ 0.0032 0.0575 0.0750 
CCQ unit s rad⋅s/m rad⋅s/m  
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axis couplings may not produce significant position perturbations in all 
axes. However, it still causes undesired force disturbances to the control 
systems. For maglev and air-bearing stages, cross-axis couplings lead to 
perturbed position errors in all the axes and possibly instability due to 
the loss of the position-measurement signals. Static parasitic errors in 
precision positioning have been addressed in the literature. However, 
these errors were discussed only for positioning with flexure stages or 
multi-moving-part stages with mechanical bearings, in which the flexure 
structures and mechanical bearings’ imperfections were the main causes 
of parasitic errors. For maglev and air-bearing stages, the perturbed 
position errors (or cross-axis perturbations) are caused by both in-axis 
and off-axis errors in the forces. This occurs statically due to the 
stages’ geometrical errors and dynamically due to many reasons 
including the power electronics’ dynamics, the position-dependent end- 
effects of magnets and coils, and misalignments between the mover and 
stationary part during transient responses. For maglev and air-bearing 
stages the errors occurred dynamically are more of a concern 
compared to the static errors because the dynamic errors may remain 
hidden at low speed. Means to quantify and compare the effects of cross- 
axis couplings in transient responses did not exist. 

This paper presents a detailed analysis on the maps between the 
bounded errors of the actuators’ forces and the variation ranges of the 
coil currents in closed-loop control for three stage design config-
urations—triangular, cross, and square. Our analysis indicates that the 
cross-configuration is with the highest potential of minimizing the cross- 
axis couplings in 6-DOF planar stages with long strokes. This analysis is 
supported by the experimental results obtained from our 6-axis maglev 
stage with 8 Lorentz coils and a Halbach magnet matrix. With the total 
weight of the coils of only 0.205 kg, the achieved translational-motion 
speed and acceleration are 70 mm/s and 1.4 m/s2, respectively. Com-
parisons with the performances of previously-reported multiaxis stages 
show that our stage offers significantly reduced cross-axis perturbations 
during a mm-scale translational motion. In addition, the CCQ is defined 
in this paper to be used as a key measure in the comparisons between the 
performances of multiaxis positioning systems. Five sets of experimental 
results with the corresponding CCQ values are provided as a benchmark. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.precisioneng.2019.11.013. 
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