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Multiscale Control for Nanoprecision Positioning Systems
With Large Throughput
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Abstract—A problem of continuing interest in feedback control
is handling conflicting time-domain performance specifications.
Semiconductor manufacturing is one of the applications of par-
ticular interest in this context with the demanding feature sizes
(on the order of a few tens of nanometers) to be produced on
a wafer while still requiring high throughput (greater than 100
wafers per hour). In this brief, we propose a multiscale control
design method based on a reduced-order model-following scheme
for the dynamic systems with such conflicting time-domain per-
formance requirements. This method uses a dynamic reference
model to make the plant output track the model output as closely
as possible without increasing the overall order of the control
system. Optimal proportional–integral (PI) control is used, which
is essentially a modification of the conventional optimal control. A
detailed analytical proof is given to show that this control scheme
effectively overcomes the limitations of the conventional optimal
control techniques and provides consistent performances at nano-
as well as macroscale positioning with fast rise and settling times.
Benefits and limitations of the proposed control scheme are de-
scribed and stability and performance analyses are discussed. A
six-degree-of-freedom (6-DOF) extended-range magnetically levi-
tated (maglev) nanopositioning stage, which is open-loop unstable,
is used as a test bed to demonstrate the developed control strategy.
Step responses under a variety of conditions are obtained to verify
the effectiveness of the proposed method. This method exhibits
significantly better and robust performances in terms of transient
as well as steady-state behavior compared with conventional op-
timal-control schemes. Furthermore, it can be applied to a general
class of higher-order linear time-invariant (LTI) systems with or
without open-loop instability.

Index Terms—Multiscale control, nanopositioning, optimal pro-
portional–integral (PI) control, reduced-order model following,
semiconductor manufacturing.

I. INTRODUCTION

APROBLEM of continuing interest in feedback control is
handling the performance specifications of a controller

to meet given time-domain characteristics, some or all of
which may be conflicting in nature. In particular, the desired
performance specifications may require 1) fast responses (in
rise and settling times) with little or no overshoot and 2) large
travel ranges with nanometer-level position resolution. Fast
response is important in applications such as a manipulator’s
pick-and-place operations near a wall, filling a tank with fluid
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in minimum time without spilling over, and temperature con-
trol in hazardous environment. Fine position resolution and
high accuracy are required in positioning applications such
as microstereolithography, nanopositioning, and scanning and
imaging of nanoscale phenomena. In these applications, how-
ever, there is a notable tradeoff between the position accuracy
and the process throughput, particularly in the applications
requiring large travel ranges. High position accuracy can be
achieved for large travel if the scan speed is kept very slow.
However, in commercial applications like semiconductor
manufacturing, high position resolution as well as throughput
is important. We use the term multiscale control throughout
this brief in order to emphasize the fact that such a control is
capable of meeting such conflicting time-domain performance
specifications and providing desired performances in both
nano- and macroscale operations.

Despite the advancement in the control theory over the last
few decades, this problem of dealing with conflicting time-do-
main performance specifications remains open. One reason is
that there is no analytic relationship between the system pa-
rameters and the time-domain transient-response characteris-
tics for systems of the order higher than two [1]. Even with
the conventional optimal control techniques, the problem cannot
be completely solved. The controllers tuned for load changes
tend to produce large overshoots for reference tracking, whereas
those tuned for reference tracking would result in sluggish re-
covery from load disturbances. We will further demonstrate this
fact using an example of a maglev positioner in Section IV-A
(see Fig. 2). A detailed description of the conventional optimal
proportional–integral (PI) control and the difficulties associated
with it is given in Section II.

Several methods were suggested in literature to achieve
time-domain performance specifications using various control
techniques. Phillips and Seborg [2] gave the conditions for
nonovershooting feedback control systems for linear sys-
tems. Jayasuriya and Dharne [3] described the conditions for
nonovershooting and nonundershooting responses based on
the number of nonminimum-phase plant zeros. Moore and
Bhattacharyya [1] proposed controller synthesis based on
a zero-placement method to achieve nonovershooting step
responses. Datta et al. [4] and Ho [5] designed fixed-order
constant gain, PI and proportional–integral–derivative (PID)
controllers, which met the specified time-domain character-
istics. Some of them are based on several assumptions, like
open-loop stability of the plant, a prespecified relationship
between the zeros and poles of the plant, or a strictly proper
single-input-single-output (SISO) plant [2], [3]. The devel-
oped control methods also have several limitations. Some of
them require solving a partially finite convex programming
problem while others involve searching for a solution over
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the entire set of the stability region, which may be unbounded
[5]. Furthermore, the synthesized controllers may be of a very
high order and thus affect the overall robust stability of the
closed loop [6]. This motivates the need to develop multiscale
control schemes that can satisfy the time-domain performance
specifications in a unified way. It turns out that by relieving
the constraint of overshoot from strictly nonovershooting to
suboptimally overshooting, the problem under discussion may
be much simplified. Suitable modifications of the existing op-
timal control techniques can provide significant improvements
in time-domain performances. Besides, if full-state feedback is
available, the excellent stability margin of optimal control is an
added advantage.

In this brief, we present a multiscale control technique based
on reduced-order model following that can be used to achieve
these desired yet conflicting time-domain performance specifi-
cations. It uses a dynamic reference model without increasing
the overall order of the system. The objective of this scheme is
to make the plant’s output track the model’s output as closely as
possible. Optimal PI control is used as a basis for the controller
design. The reason for this choice is its popularity in most in-
dustrial applications. PI controllers are often effective and are
easy to implement and maintain. Additionally, the results from
optimal control methods are well-known to minimize the con-
trol effort and guarantee robust stability margins, particularly if
full-state feedback is available. Furthermore, the inclusion of the
integral term ensures the zero steady-state error for type-0 plants
or the plants whose parameters are not perfectly known. We will
elaborate this claim in Section IV with the example of a maglev
positioner, which is type-0. Two other methods, namely con-
troller-switching technique and integral reset scheme, are also
briefly described. All these methods exhibit better performances
compared with conventional control schemes.

A six-degree-of-freedom (6-DOF) maglev nanopositioner is
used as a test bed to demonstrate the effectiveness of these con-
trol schemes. This maglev stage has demonstrated a positioning
noise as small as 18 nm (peak-to-peak) over a control bandwidth
of 110 Hz [7]. However, it has several inherent disadvantages
and limitations: 1) a maglev system is open-loop unstable; 2) it
tends to produce large overshoots due to absence of any con-
tact or damping in the system; and 3) its actual plant model is
highly nonlinear and a linearized model is not very accurate. All
these challenges make the maglev positioner a good candidate
to demonstrate the proposed control method.

This brief is organized as follows. Section II gives an
overview of the conventional optimal PI control and its limita-
tions. In Section III, we propose the multiscale control method
using a reduced-order model-following scheme. The method is
discussed analytically, addressing issues related to the effec-
tiveness of the control method, stability, and input and output
sensitivities. Section IV presents the experimental verification
and validation of the proposed method using a 6-DOF maglev
positioner as a test bed. Several step responses are given to
demonstrate the benefits of this control scheme over traditional
optimal control, the effect of initial mismatches in the plant
states, and the effectiveness of this method to perform equally
well at nano- as well as macroscale. Conclusions are presented
in Section V.

II. CONVENTIONAL OPTIMAL CONTROL

In this section, we briefly discuss the conventional optimal PI
controllers. It is usually desirable to include the integral action
in optimal control systems in order to eliminate the offset due
to unmeasured load disturbances or modeling errors. Consider
an linear time-invariant (LTI) system

(1)

where is the state vector of dimension , is the control
vector of dimension , is the output vector of dimension ,
and , , and are constant matrices of appropriate di-
mensions. This system is assumed to be controllable. It is also
assumed that full-state feedback is available. Its unavailability
would not affect the rest of the following analysis. However,
robust stability could not be guaranteed in that case. For piece-
wise-constant, nonzero-reference points, an analogous PI con-
trol law can be obtained by redefining the state and output vec-
tors. Let be the -dimensional subset of for which the
integral action is desired. It is assumed that since there
are only a total of degrees of freedom [8]. Then the augmented
system can be described as

(2)

with the new set of variables , ,
, and , where is the appropriate

partition of , and the subscript denotes the reference values
of the corresponding variables. Furthermore, the set of integral
state variables, is defined as

(3)

Let denote the performance index for the augmented system

(4)

where . If the augmented system is controllable,

the optimal control law is given by

(5)
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where satisfies the algebraic Riccati equation. The control law
in (5) can also be expressed as

(6)

where and are appropriate partitions of in (5).
Equation (6) gives the optimal PI control law for the general

nonzero reference-tracking problem. The control gain matrices
and are determined by the choice of the weight ma-

trices , , and . These weight matrices are often treated as
the tuning parameters for a given control application. Although
the integral-control action is essential to eliminate the tracking
error, the choice of the weight matrices in the quadratic perfor-
mance index (4) usually involves a compromise between load-
change and reference-tracking performances. In Section III, we
propose a remedy for this problem based on modifications of
the conventional optimal PI control.

III. MULTISCALE CONTROL

One viable choice to deal with the problem discussed in
Section II is to design multiple controllers a priori to meet
these conflicting objectives separately. The two controllers
are then put into use sequentially. For practical reasons, it is
preferred to ramp the transition from one set of controller gains
to another in order to avoid any instability. Another promising
solution is to limit the size of the integral term during the time
period until a new reference point is reached. This strategy
is equivalent to converting a tracking problem to a regulation
problem after a certain period of time. This method makes full
use of the integral control action in the beginning and hence,
does not increase the rise time.

However, in many applications, it is desirable to use only
one set of control parameters for reference tracking as well
as load changes. On the other hand, it is also desirable to
have small overshoot and fast response time without causing
additional controller complexity or increasing the order of the
plant model associated with the model-following approach. In
the following subsections, we will focus on the development
of a reduced-order model-following scheme and its analyses
in terms of stability, transient and steady-state behavior, and
closed-loop criteria such as sensitivity function, bandwidth,
and control effort.

A. Reduced-Order Model-Following Scheme

A reduced-order model-following approach may be used to
solve the multiscale control problem. Conventional model fol-
lowing schemes try to make the output of the plant follow
the output of a reference model as closely as possible. The
reference model is a dynamic model which has as its input
vector. A major disadvantage of the model-following scheme
is that the original system’s state vector is appended with the
model’s states, and hence the overall plant order increases. This
requires a higher-order Riccati equation to be solved and an ad-
ditional gain matrix to be stored.

A modified version of the model-following scheme is used
here that does not require any additional states. Consider a ref-
erence model of the form

(7)

The , , and matrices in this reference model are as-
sumed to be the same as those of the plant in (1). An approach to
ensure that the reference model has a suitable reference-tracking
response with little or no overshoot is to specify as

(8)

where is the control gain matrix specified in (6). Using an
analogous derivation as outlined in Section II, we get

(9)

Define , , and .
Then, the error dynamics is

(10)

The optimal PI control law for this plant is given by

(11)

Using (8) and (11), we get

(12)

This control law has essentially the same structure as that of the
conventional optimal PI control given by (6) with replaced
by in the integral term.

It may be proven that the reduced-order model-following
scheme reduces the problem of overshoot subject to some
conditions. Consider the plant and model dynamics defined by
(1) and (7), respectively. The reference input dynamics is given
by

(13)

Using the new set of variables defined in (10) and substituting
the control law from reduced-order model following scheme
(11) in (1), we get

(14)
Similarly, using the new set of variables defined in (9) and using
control law (8), we get

(15)
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Subtracting (15) from (14), we get

(16)

Differentiating (16) with respect to gives

(17)

with initial condition . Therefore, from (16),
we have . The solution of (17) with these
initial conditions is given by

(18)

Equation (18) shows that the model states follow the plant
states. Furthermore, the integral term in (16) is eliminated, pro-
vided 1) the initial states of the model are equal to those of the
plant and 2) the plant and model system matrices are identical.
In the presence of modeling errors, the integral windup will
be small as long as the model output is close to the plant
output . Thus, the problem of excessive overshoot due to in-
tegral action is reduced without increasing the closed-loop plant
order, requiring different controller gains and subsequent con-
troller switching, or requiring the perfect knowledge of the plant
transfer function (TF) or initial plant states. We will further dis-
cuss the effect of mismatch between the initial plant and model
states in Section IV.

B. Stability and Performance Analyses

Since we are using modified optimal linear-quadratic (LQ)
control methodologies to design the controllers and since full
state feedback is available, we have the advantage of the guar-
anteed stability margins, i.e., the gain margin between 6 dB and

, and the phase margin greater than 60 [9]. This may be ver-
ified by doing a Nyquist stability analysis at any loop-breaking
point in the closed loop.

Robustness analysis may be done similarly for process
and measurement noises. Consider the combined closed-loop
system given by

(19)

where and are process and measurement noises as indicated
in Fig. 1. The input sensitivity TF for this system from the
input disturbance to the plant outputs is given by

(20)

Likewise, the output sensitivity TF from measurement noise
to the plant outputs is given by

(21)

Stability of the closed-loop system at the loop-breaking point
“A” (see Fig. 1) and an analysis of the performance of the pro-
posed scheme in the presence of both process and measurement

Fig. 1. Block diagram representing the multiscale control scheme.

noises will be demonstrated with the maglev nanopositioner
example in Section IV. We conclude this section by making
a remark that we carried out the entire design on a generic
state-space model of an th-order plant with inputs and
outputs. Thus, the method discussed in this section is valid for
any LTI plant with higher order as long as the assumptions and
conditions noted in Sections II and III are valid.

IV. MAGLEV NANOPOSITIONER EXAMPLE

We used a 6-DOF maglev nanopositioner to test the proposed
control scheme and demonstrate its performance. This maglev
stage comprises a moving element and six stationary electro-
magnetic coils for actuation. The most notable feature of this
positioner is that the moving platen is a simple single-part struc-
ture that is capable of accurate positioning with a large travel
range and high speed in all 6-DOFs [7]. It has an extended planar
travel range of 5 5 mm with a positioning noise of 18 nm
(peak-to-peak) over a 110-Hz control bandwidth. The six-axis
motions are generated by appropriate combinations of six inde-
pendent force components from the actuators. Horizontal posi-
tion and velocity of the platen is measured by three single-axis
laser interferometers at subnanometer resolution. For vertical
motion sensing, we have three capacitance gauges mounted on
the base plate right below the platen. Real-time digital control is
implemented and performed on a digital signal processor (DSP)
at a sampling frequency of 5 kHz. System identification is nec-
essary in order to get an accurate plant model and subsequently
to design reliable control strategies. It is not only crucial but
also challenging because of the inherently unstable nature of
magnetic levitation. Thus, the Box–Jenkins (BJ) method with
a closed-loop framework and a known controller structure is
used to obtain the closed-loop TF [10]. The identified contin-
uous-time state-space plant model for the -axis motion is given
by

(22)

where the state vector consists of the position and velocity
of the maglev positioner, the control input is the force re-
quired along the -axis and the output vector consists of the
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Fig. 2. 1-mm step responses in x with the multiscale control scheme with
Q = 10 (solid line), and conventional LQ controllers with Q = 10

(dashed line) and Q = 10 (dashed-dotted line).

sensed position and velocity data from the laser interferome-
ters. Plant models in other five axes may be identified and used
for controller design in a similar manner and are omitted in this
brief for brevity. Note that there is one right-half plane pole in
the identified plant model, which correctly reflects the maglev
system’s open-loop instability due to the negative stiffness of
the magnetic origin.

An LQ optimal controller was designed for this system fol-
lowing the method discussed in Section II. Since we are pri-
marily interested in positioning, we use the integral action for
position control only. The weight matrices were chosen to be

and after a
few iterations, starting with using acceptable values of and

based on the sensing range of the laser interferometers and
actuator saturation limits, such that and

.

A. Transient and Steady-State Performance

A block diagram showing the implementation of the pro-
posed control scheme on the plant model (22) is shown in
Fig. 1. Step responses to a 1-mm command using the con-
ventional optimal control as well as the proposed multiscale
control are shown in Fig. 2. They support our claim made in
Section I that a single controller cannot be used to achieve
good load-change as well as reference-tracking performance
objectives. The reduced-order model-following scheme, on the
other hand is capable of meeting both the objectives with a
single set of controller gains, and without requiring any abrupt
changes in the gain values. Fig. 3 shows the 1-mm and 100-nm
step responses for positive and negative steps, normalized to
unity for comparison. The plot demonstrates that the multiscale
control scheme gives almost identical performances at nano- as
well as macroscale, except for the noise level, thus justifying
the term multiscale as we defined in the Section I. It also shows
that the controller design results in repeatable performance and

Fig. 3. 1-mm (solid line) and 100-nm (dashed line) step responses, normalized
to 1 for comparison, with the proposed multiscale control scheme.

the results presented herein are not based on a single set of
experiments.

B. Performance With Initial-State Mismatch

In Section III, we demonstrated that the integral term of the
controller is eliminated provided the initial states match per-
fectly. Furthermore, in the presence of modeling errors, the in-
tegral windup will be small as long as the model output is
close to the plant output . Here, we demonstrate that even
in the presence of initial-state mismatches as much as 20%,
the model states converge to the plant states in about the same
time as without any mismatch. This percentage is chosen only to
demonstrate the effect of mismatch; the plant states track the de-
sired reference inputs no matter how large the initial mismatch.
Fig. 4 demonstrates this situation where the initial state vector of
the model is not identical to that of the actual plant. The model
states are shown with solid lines while the actual plant states are
shown with dashed ( 20% mismatch) and dashed-dotted lines
( 20% mismatch). With imperfect knowledge of initial plant
states, the dynamic performance is moderately affected in terms
of overshoot. However, there is no significant change in the rise
and settling times and the steady-state errors. Furthermore, the
model states converge to plant states in almost the same time.
This implies that for any reference-tracking problem, if the ini-
tial plant states are not known perfectly, a dummy step can be
given to allow the model states to become identical to those of
plant. Any subsequent meaningful tracking can then be done
without any error.

C. Stability

Although it is apparent from the step responses shown in
Figs. 2–4 that the multiscale control scheme results in stable
control loops even in the presence of model uncertainties and
initial-state mismatches, a formal stability analysis is still nec-
essary to find how much uncertainty can be tolerated in the
closed loop. Fig. 5 shows the Nyquist plot for the reduced-order
model-following scheme at the loop-breaking point “A.” Since
we have an unstable pole in the plant TF and the Nyquist plot
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Fig. 4. Model states (solid line) and responses of the plant with multiscale con-
trol scheme in the presence of the mismatch between the plant and model initial
states with a difference of +20% (dashed line) and�20% (dashed-dotted line)
in (a) position and (b) velocity.

encircles the 1 point in the counterclockwise direction once,
we have a stable closed loop from the Nyquist criteria. Further-
more, in this case, the closed-loop has a gain margin of at least
11.2 dB and a phase margin of at least 63 .

D. Performance in the Presence of Noises

Another analysis of particular interest is the robustness of the
designed controller to process and measurement noises. Fig. 6
shows the input and output sensitivity TFs for the maglev posi-
tioner using (20) and (21). It may be concluded from Fig. 6 that
the output of the plant is not affected significantly by the input
disturbances. The process noise at the input end to the plant is
physical in nature and is expected to be of low frequency. For
the entire frequency range, the maximum amplification of these
disturbances is around 80 dB at around 20 Hz. The measure-
ment noises, on the other hand, have high-frequency contents.
For the frequencies greater than 1 kHz, the amplification of the

Fig. 5. Nyquist plot showing the stability margins of the multiscale control
scheme at control-input loop-breaking point to the plant “A” in Fig. 1.

Fig. 6. Input sensitivity TFs between the control input disturbance d and the
states position (solid line) and velocity (dashed line), and output sensitivity TFs
between the measurement noises n and the respective states position (solid line)
and velocity (dashed line).

position measurement is less than 60 dB, while that of velocity
measurement is less than 25 dB. Thus, the multiscale control
scheme offers almost the same level of performances even in the
presence of process as well as measurement noises.

V. CONCLUSION

The main focus of this brief was to present a multiscale con-
trol technique that can be used to meet conflicting time-domain
performance specifications at nano- as well as macroscale. In
particular, emphasis was given to the requirement of achieving
little or no overshoot with a zero steady-state error and fast dy-
namic response in terms of rise and settling times. Semicon-



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 15, NO. 5, SEPTEMBER 2007 951

ductor manufacturing is such an application wherein these per-
formance objectives translate into achieving nanoscale feature
sizes at high throughput.

The effectiveness, stability, and performance analyses of
the proposed method were performed in detail. Emphasis was
given on the fact that the proposed method does not increase the
overall order of the closed-loop system unlike the traditional
model-following schemes. A maglev nanopositioner was used
as a test bed to demonstrate the working of this method on
a practical system with problems like open-loop instability,
unknown plant TF, imperfectly known initial plant states, and
presence of process and measurement noises. The multiscale
control scheme was found to provide significantly improved
responses compared with the conventional optimal PI control.

In the experimental verification with the maglev nanopo-
sitioner, the designed controller gave almost identical perfor-
mance for step sizes of 1 mm and 100 nm. The gain margin was
found to be greater than 11.2 dB along with a phase margin of
at least 63 . Furthermore, an initial mismatch between the plant
and model states can also be sustained without losing stability
or affecting the performance of the closed-loop significantly. In
the presence of process and measurement noises for position,
the attenuation is about 80 and 60 dB, respectively, in the
frequency ranges of interest. The results presented herein were
consistent and repeatable. Although only a linear system with
a known plant model was considered, the proposed multiscale

control method works well with a general class of higher-order
LTI systems with or without open-loop instability.
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