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Abstract—This paper presents a design and analysis framework
for the general class of permanent-magnet electric machines. In
our analysis, surface-mounted linear motors consisting of perma-
nent magnets and iron-less current-carrying coils are treated in
a uniform way via the magnetic vector potential. This analysis is
developed to design novel linear magnetic levitators for driving
precision motion control stages such as those used in wafer
steppers. For one such motor structure we give analytical for-
mulae for its magnetic field, force, flux linkage, inductance of the
winding, and back electromotive force. We provide experimental
results with a six-degree-of-freedom magnetic levitator. These
results are in good agreement with analytical estimations. The
levitator uses a permanent-magnet Halbach array in order to
improve its power efficiency. By analogy, there also exists an
electromagnetic dual of the Halbach array. One such dual utilizes
a triangular winding pattern in order to achieve a primarily
single-sided magnetic field.

1. INTRODUCTION

HE control of motion in the near-vicinity of a plane

is an important task in many precision machines, e.g.,
wafer steppers, surface profilometers, and scanned probe mi-
croscopes. In the case of wafer stepper stages, which are the
primary focus of our work, the motion control stage must
provide travel over relatively large displacements (hundreds
of millimeters) in two planar degrees of freedom, small
displacements (hundreds of micrometers) in the direction
normal to the plane, as well as small rotational displacements
(milliradians) about three orthogonal axes.

The work described in this paper is motivated by the
desire to develop analytical tools to facilitate the design
of a stage which can provide the above ranges of motion
with only a single magnetically-levitated moving part. Qur
approach promises significant advantages for the wafer stepper
application. Among these advantages are the following: 1)
A single moving part can be designed to have high natural
frequencies and thus can be moved rapidly vis-a-vis multi-
element stages which have more complex dynamics. This
allows increased machine throughput. 2) The accuracy of
a magnetically levitated stage is not limited by its bearing
surfaces, and thus our design can scale with the decreasing
feature sizes of next-generation integrated circuits. 3) A fully
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levitated stage requires no precision bearing surfaces, which
thereby reduces fabrication cost. 4) A levitated stage requires
no lubricants and does not generate wear particles, and is thus
highly suited for clean-room or vacuyum environments. 5) By
eliminating complex mechanical elements the stage fabrication
costs are reduced and the stage reliability is increased.

The key elements of any magnetically levitated stage are the
actuators which apply controlled forces in order to stabilize
the position of the stage. Since our stage requires significant
planar travel, we have focused our design effort on the
development of linear motors which are compatible with
the motion requirements stated above. A promising motor
structure utilizes permanent magnets on the moving stage
which are driven by stator coils in the fixed machine base.
This motor structure is the focus of the current paper. In order
to choose the best motor topology, we have developed a set
of analytical tools which allow the optimization of the linear
motor design in terms of criteria such as packaging, force
density, power efficiency, and winding pattern. These tools
are presented in subsequent sections of this paper.

Many other researchers have studied the problem of the
control of planar motion. An early example is the Sawyer
motor given in [1]. This motor is a variable reluctance type
and is used without any positioning feedback, i.e., as a
stepper. The reported step resolution is on the order of 250
um (0.01 in). Since the primary application is z-y plotters,
0.01-in resolution is sufficient. In the semiconductor industry,
higher position resolution is required. To this end [2] and
[3] present methods to improve the original version of the
Sawyer motor for precision motion control with a particular
emphasis on solutions used for wafer stepper stages. Keeping
pace with advances of permanent-magnet material in the last
decade, surface motor structures using permanent magnets are
presented in [4]-[6]. Other planar movement systems are given
in [7] and [8].

The permanent-magnet array we use in our motor is first
presented by Halbach [9]. Such an array is also studied in [10],
where it is represented by a two-dimensional multipole field
expansion via complex variable theory: Abele and others rep-
resent the magnet array in spherical harmonics and calculated
the coefficients [11].

In order to analyze permanent-magnet electric machines
effectively, we have adopted an approach which can treat
both magnetized material and winding current in a uniform
fashion. Further, the results we derive herein can be used to
analyze other types of machines. For instance, the motors we
have developed are iron-free in order to remain compatible
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with magnetic suspension bearings. However, the transfer
relations we present can be applied in the context of an iron-
backed motor simply by changing boundary conditions. The
development of these transfer relations is described in detail so
that other researchers can adapt our analyses to their particular
design objectives.

II. MAGNETIC FIELD THEORY

For the theoretical aspects of this paper, we adopt Melcher’s
general methodology to describe electromagnetic phenomena
with transfer relations [12]. Under magnetoquasistatic (MQS)
assumptions [13] the time variation of electric field related
quantities is insignificant. In this case, Maxwell’s equations
for magnetic field intensity H, magnetic flux density B, and
electric field intensity E simplify to

VxH=1J; !

V-B=0 2
0B

VxE 5 ) 3

where J; is free volume current density due to the movement
of free charges. The quantities B and H are related through
magnetization M as

B = po(H + M) @

where 5 = 4m x 1077 H/m is the permeability of free
space. We assume the permeability to be po everywhere since
our design is iron-free. This assumption is reasonable even
for permanent-magnet material like NdFeB since its relative
permeability is near unity. .

The boundary conditions which derive from (1) and (2) can
be written as n x [B? — BY] = poK; + n x [pgM® — poM?]
and n - [B¢ — B%] = 0. Here, variables denoted a and b
represent the associated quantities evaluated on opposite sides
of a boundary. The vector n is normal to the boundary and
points into the side labeled a. The variable Ky is a source
surface current directed along the boundary. We further define
K. = n x [M® — M?|; this can be thought of as an equivalent
surface current which represents step discontinuities in the
magnetization tangential to the boundary.

The magnetic flux density B can be represented with the
magnetic vector potential A as B = V x A. Since the
divergence of the curl of a vector is identically zero, this
representation automatically satisfies (2). Applying the curl
operator to both sides yields

VxB=VxVxA=V(V-A)-V?A. ®))

If we set the Coulomb gauge, V - A = 0, this leads to
VxB=-V?A. ©6)
However, via (1) and k4) we also have VX B = uo(J s+ V x

M). Combining the last two results yields the vector Poisson
equation

VZA = —pp(J; + V x M). (7

Fig. 1.

Linear motor model.

In the above equation, —poJy represents the stator current.
We can think of the term — oV X M as an equivalent current
which represents the magnet.

In two-dimensional cases where the fields lie in the zz-
plane with no dependency on y, the vector potential is purely
y-directed. In this case the vector Poisson equation simplifies
to the scalar relationship

82

0
—Z-Ay = —Hlg (Jy + aMm -

0
By —Mz> . (8)

oz

This scalar equation is used in the analysis which follows.

III. LINEAR MACHINE ANALYSIS

The geometry used to model the motor fields is shown in
Fig. 1. Here the lower shaded region of thickness T' represents
the stator winding with y-directed current density J, which is
expressed as an infinite Fourier series. The upper shaded region
of thickness A represents the magnet array, carrying a primed
coordinate frame which is displaced from the base coordinate:
frame by a vector (zo + )i, + 20i.. Thus zo is the motor
air gap, and zy is the lateral displacement of the magnet array
relative to the stator. The magnet array is represented by an
infinite Fourier series in horizontal(z-directed) and vertical (z-
directed) magnetization components through terms I\Zfzn and
M, respectively. A similar Fourier representation is also
applied to J, B, H, and A. The pitch of the motor is [, and
the spatial wavenumber of the nth harmonic is k, = 27n/l.
We further define v, = |k,|. The motor is assumed to be
of depth w in the y-direction. End effects in this direction
are neglected. Letters (a)-(h) represent the surfaces at the
indicated boundaries.

A. Field Solutions

In earlier work [14], the field and force characteristics of a
linear motor were analyzed via the magnetic scalar potential.
Since the' scalar potential is not unique in current-carrying
volumes, the analysis therein uses a Green’s function approach
to calculate the field due to the stator. In contrast, in the
present work we use the magnetic vector potential since it is
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valid throughout both the permanent magnet and the current-
carrying regions of the linear motor model. Use of the vector
potential also simplifies the calculation of flux linkage in order
to calculate coil inductance.

Extending results developed in [12], we show in Appendix
A that the transfer relations which describe the model of Fig. 1
are

Bgn = '—’YHAZn (9)

BZ" =k coth k"A sinh_linA Ab
B;n - m‘l—m —coth knA AC
sinh knA

cosh kp A—
+
{B;gn} -k [coth knxo
k

10)

__coshk, A

](11)

sinh kn
-1 Ad
1 sinh kn 2o :! ,:A
PR _ e
Shha, . —Cothknzo | |A

coth k,,I" ;ﬁ? é-{"

coshk,I'—1
[ sinh k, I’ }

_coshk,I'-1
sinh k,, T

Bi‘n = 'ynAzn.

Ho 5
Laly
k.Y

(12)

13)

The terms containing M,,, and jyn represent sources in the
magnet and current regions, respectively. The other source
term M., enters through boundary conditions and does not
“appear in the transfer relations. Since (11) describes the
transfer relations in free space, it has no source term. Equations
(9) and (13) account for the half-infinite regions above and
below the boundaries (a) and (h), respectively.

These transfer relations express the constraints on field and
potential quantities imposed by the MQS form of Maxwell’s
equations. In our case, the transfer relations give eight equa-
tions in sixteen unknowns. In order to solve for the field
quantities, eight more independent equations are required.
These come from the boundary conditions on field and po-
tential at each .of the four boundaries; these conditions are
given in Appendix A. Using these conditions, the fields at the
boundary (d) can be obtained as follows

A, = 2k J ne” (1 - e_%zr)e—jlcnzo
’ ( éinM i Mn) (1-e%) a4
ijgn = —2; jyne“%wo (1 — e—wnl“)e—jknzo
+ (_%‘Mzn - %Z—:Mm) (1 — e—vnA)_ (15)
B. Forces

In this section we describe the force acting on the magnet
array due to the stator excitation currents. This force is derived
via Maxwell stress tensor [15]. As presented in [12], the stress
tensor T;; for magnetically linear materials associated with the
Korteweg-Helmholtz force density is

T” = uHiHj bi; Hka (16)

l]2

using the Einstein summation convention where since the k’s
appear twice in the same term they are to be summed from
one to three. The Kronecker delta §;; is 0 when ¢ # j, and is 1
when ¢ = j. The force acting on a volume of the magnet array
is given by the integral of the stress tensor over the surface of
the volume. For a spatially-periodic structure, the integration is
simplified if the volume encloses an integer number of periods.
In this case the components on the z-faces of the volume
cancel due to symmetry. We can consider the upper surface of
the volume to extend to infinity, where the fields are zero and
thus the only contribution is along the bottom surface which
we take to lie on boundary (d).

If the lower surface encloses an integer number of periods
and is of area S, then the z-directed force acting on the
enclosed section of magnet array is given by

Fp=-8(T%), (17)

and the z-directed force actmg on the enclosed section of
magnet array is given by

= —S(sz>z =

where the angle bracket expression (-), indicates the spa-
tial average on z of the quantity enclosed by the brackets.
The minus sign appears because the bottom surface has
an outwardly-directed normal in the —z-direction. A useful
identity is the spatial averaging theorem (Section 2.15 of [12])

’ < i A, e Tknz i éme"ﬂ“’"z>
z

S “O 20 gegd - HIHY)

~Suo(HZHY), (18)

n=—<x>oo m:—-oooo )
= > A,B_ > A.B; (19)

where the last step holds if the Fourier series represents a real
function since the components must then possess conjugate
symmetry.

Although the analysis can be carried out more generally,
in the following we assume that the stator currents are si-
nusoidally distributed with a fundamental period of ! and
thus that J,, is equal to zero for n # +1. Specifically, we
let Jy = J, + jJb, and J_1 = J, — jJo. That is, 2J,
is the peak phase A current density and 2J, is the peak
phase B current density. The above assumption is reasonable
since it is primarily the fundamental field components which
are responsible for ‘force production. Further, in application,
the spatial currents are driven to resemble a sinusoid and
thus the assumption is accurate for our purposes. Under this
assumption, -applying (19) to (17) and (18), and using (14) and
(15) yield, after some algebra, the forces acting on one pitch
of the magnet array as

—sin ’)"1 20

Fa:); . —y1To COs Y120 Ja
[ ] = MDM()GC cos 120 . (20)

F,» sinyi12o || Jb
where F, and F, ) are the z-directed and z-directed forces per
spatial wavelength, respectively. Here oMy is the remanence
of the permanent magnets. The constant
2wl?
G= \/—2 (
T

1—e ) (1-em4)

@D
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contains the effects of the motor geometry. The z¢ and
zo dependencies have been explicitly retained since these
variables represent motion of the magnet array relative to the
stator.

C. Electrical Terminal Relation

In order to derive the electrical terminal relation, we use
the Faraday induction law

d
%,E-dl—~a/SB-da‘

Here the integration is taken along a contour fixed in the
nonmoving frame (or the nonprimed frame in Fig. 1). The
magnetic flux density B inside the integral on the right hand
side in (22) consists of the flux densities due to the magnet
MB and due to the stator B. It can be shown that this integral
can be expanded for two-dimensional geometries as

(22)

-V, +% .{i .d]_{_f (—UxMBZ —{-—’UZMB;C)iy - dl
c C

(e

=4 [sg.ga

=7 23)

The first term is the driving voltage. The second term is
Ohmic drop denoted as Rsls. The third term is the back
electromotive force (emf), or speed voltage. Here, v, = d;t
and v, = %l are the velocities of the magnet array in the
z- and z-directions, respectively. The right-hand-side term is
the induced voltage due to self- and mutual-inductance of the
stator coil. This terminal relation gives a complete electrical
model for the linear motor. The rest of this section gives
detailed derivations of the last two terms of (23).

1) Stator Flux Linkage: The vector potential simplifies the
evaluation of the flux passing through a surface. The magnetic
flux @ linked by a closed surface S is given by the integration
of the magnetic flux density over S. By the Stokes’ theorem,
this can be represented as the line integral of vector potential
A around the contour C enclosing the surface, i.e.,

S S C

In the two-dimensional geometry of our model, the path of the
line integral of interest is confined to a plane and is a rectangle.
This situation is depicted in Fig. 2. As seen in the figure, we
have constructed a six-phase machine where in the windings
occupy rectangular windings of thickness T" and width 1/2¢,
where [ is the pitch and ¢ is the number of phases of the
machine. In our model, the vector potential A has only a y-
component which is constant in y. This enables us to readily
evaluate @ for every surface closed by the path C inside the
stator current distribution. Since the winding and its return path

are separated by half the pitch, the flux linked by a winding -

lying at x,z and z,z + [/2 is

o= 3 [Ayn(x)e"fk‘nz—Ayn(x)e—fkn<z+l/2>]w 25)

n=-—oo

where w is the depth of the stator winding.

integration
path

winding <

Y
N
g N
A A oy
— SR

1o 0 / z

one-phase pair
of winding

Fig. 2. Closed contour for magnetic flux.

If the turn distribution is uniform with 7o turns per unit
cross-sectional area, then there are 7pdzdz turns in an infini-
tesimal area. The total flux linked by the one phase winding
for one pitch ! is given by the integration of the linked
infinitesimal flux over one pitch of the winding (Fig. 2)

o0 1/2¢ ) T .
A=wn Y / 2e7Fn% 0y / Ayn(z)dz.  (26)
0 0

n=-—co,0dd

2) Self-Inductance: Let us derive a formula for a six-phase
winding (¢ = 6) as in Fig. 2. From (26), following some
algebra, the total flux linkage in terms of the current density
may be expressed as :

Ag = Jowol

™

o< ¥ _TLF_
3 %(e—ww;l)(m—“ 1).

n=-o00,0dd n Tn

@7

The Fourier coefficients of the current density with the
amplitude Jy for the first phase out of six can be shown as

= J—O—(ej"n/ﬁ — 1), n: Odd-
Tyn = {6, " n: even 28
Substituting this into (27) yields
Ao = pownol® Jo
s 24
=1 —ml g
Z —4(1 —cos%n) (F—i— e—).
n=—o0,0dd n Tn
(29)

Let Jy = ngls, where Ig is the stator winding current. Then
the self-inductance of one phase winding per pitch is, via

As = LgIg, given by

Lg = ﬂowﬂglg ‘
2m

i %(1—005%71) (F+e—_lnr—_1>.

n=—co,odd Tn

(30)
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We use this formula to estimate self-inductance of an example
motor winding later in this section.

3) Back Electromotive Force: Following an analysis simi-
lar to the previous section the back emf of one pitch is given
by

) .
Voemt = 2wng Z {—'Ua: <_!;_0Mzn - %;;_IJOMzn)

tu, (_JanOMzn n ﬁqun)}
29n, 2
, (1 _ 6~vnA)e—vn(zo+I‘)ejkn20

126 r
/ e—’k"zdz/ e%dz.
0 0

We can specifically derive the back emf for a six-phase motor
(¢ = 6) with evaluations of the integrals. The back emf per
pitch at the stator terminals of a one-phase winding denoted
in Fig. 2 then reduces to :

S} . . .
3 (f‘—oMm + JkﬂMm)
n=—o00,0dd n n

. (]E_m_ + U_z> (]_ — e“"an)(l — e_’YnF)
Fn \

n

n=—oo

(€2Y)

Voemt = wno

. (e"j’r"/6 - 1)6_7"10(3’"“"20. (32)

This completes the exposition of the electrical terminal
relation given in (23). In the following we give experimental
verifications to the above analytical results.

D. Prototype Levitator and Experimental Verifications .

A six-degree-of-freedom magnetically levitated z-y stage
has been constructed which uses electromagnets to control
the motion of a 13.5-kg platen in five (three rotational and
two translational) degrees of freedom and a permanent-magnet
linear motor to control motion in the sixth degree of freedom
(Fig. 3). For fine focusing the stage can provide 400 um of
travel normal to the wafer surface and milliradian rotations
around three axes. The linear motor consists of a permanent-
magnet Halbach array attached to the underside of the platen
and a linear ironless six-phase stator fixed in the machine
frame. A conventional mechanical linear slide will be used
to provide 200 mm of travel in the y-direction. A preliminary
500-nm step response in the z-axis is shown in Fig. 4. The
position of the stage in the z-direction is read with a laser
interferometer with 0.6 nm of position resolution.

The parameters of the motor are the following: number of
phases, ¢ = 6; number of turns per phase: 80 (#22 copper
wire); turn density, 7o = 1.86 x 108 turns/m?; pitch, [ = 5.08
cm (2 in); depth, w = 15 cm; winding thickness, I' = [ /5;
magnet-array thickness, A = [/4. A winding has 44-cm
average turn length; its average end-turn length is 14 cm. The
- total winding resistance and self-inductance for one phase are
19.8 Q and 9.48 mH, respectively. The stator has 10 pitches of
winding (total length of 50.8 cm). The magnet array consists
of 5% pitches (21 rows of 0.5 x 0.5-in magnets) of NdFeB
material with remanence poMy = 1.1 T.

levitated platen

electromagnet
targets

magnet array laser beam path

linear motor stator

Fig. 3. Six degree-of-freedom magnetically levitated stage.
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Fig. 4. 500-nm step response.

With the motor geometry given above we can estimate the
self-inductance of a stator winding directly with (30). Since
(30) gives self-inductance per pitch, we need to multiply it by
the number of pitches of winding which is 10 in this case.

Our analysis predicts a total self-inductance of 6.27 mH for

a phase. The actual inductance measured by a dynamic signal
analyzer is 9.48 mH. In spite of this 34% error, they are
in good agreement considering that the analysis ignores the
winding end turns (32% of the total length) which connect the
successive phase sections. These end turns likely account for
the larger measured inductance.

An experimental wave form for the back emf of one phase
is shown in Fig. 5. These data were acquired as follows.
During the experiment the platen is suspended in five degrees
of freedom. The driving circuits for the linear motor are
disconnected. The platen is then pushed by hand while the
voltage on one phase is recorded. The air gap between the
magnet array and the stator winding is maintained at 400 pm.
The velocity along the z-axis is estimated graphically as
v, = 160 mm/s. On the basis of the fundamental terms
(n = :i:l) of the square Halbach array’s Fourier coefficients,
Mm,il = -‘/a—MQ and Mz’:tl = :l:j%%l, we predict the peak
magnitude of the back emf should be 1.6 V per phase via
(32). Since the magnet array consists of 5% pitches, the total
effective back emf is estimated as 8.4 V. The actual data yield
about 8 V. The end and edge effects in the magnet and winding
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volts
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1% 05 3 5 2 25 3
seconds

Fig. 5. Back emf wave form.

may be primarily responsible for the decrease of the magnitude
in the real experiment. That is, the effective flux density linked
by the winding is less for the real motor than that predicted
by the idealized theory.

IV. SINGLE-SIDED FIELD DESIGN

Halbach developed a single-sided rare-earth cobalt magnet
array for use in undulators and particle accelerators [16]. The
use of Halbach magnet arrays for motor design is presented
in [14]. It is shown there that the square Halbach array
has /2 times stronger field than that of more conventional
ironless magnet arrays with the same volume. The earlier
work [14] alluded to, but did not develop analytical results
for single-sided electromagnets which are the analog of the
Halbach magnet array [9]. This kind of winding pattern may
have applications where it is desirable to build a single-sided
electromagnet such as in maglev trains. A possible winding
pattern for such an electromagnet is illustrated in Fig. 6(c). The
figure shows the winding’s analogy with the Halbach magnet
array through the relationship K, = n x [M? — M?]. Since it
is not possible to implement true surface currents, the winding
pattern occupies the volume of the triangular regions shown.

This single-sided winding pattern can be readily analyzed
using the approach presented above. Summarizing this result,
the fundamental Fourier component of the normal magnetic
flux density due to such a triangular stator current distribution
is

= podo | 1 — el 1 T _T
Bgy =~ { - 3 271 + e ™ )
Var o () +Vf( r
(33)
and
—T
Bh :_[L()Jo l1—e™m n o e ml
xl \/5 . o 1
Fi T (ﬁ) +
(34)
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X ° L] X| X e
® ® [ ] x| x ®
xxxx [ ®e0se|® e xx|® ®lesce
(b)
° x ® x
X [ ] ® x X ®
x [ x ®

©

Fig. 6. Electromagnetic dual of Halbach array. (a) Halbach magnet array.
(b) Equivalent current model. (c) Triangular winding pattern.

at -the boundaries (e) and (h), respectively. Here, Jo is
magnitude of the current density within the triangular regions
shown.

The weak side (k) of the winding has no fundamental field
under the condition that the pitch [ is four times as long as
the thickness I'. This is so, since i~f we use y; = 27/l and
substitute [ = 4T" into (34) we get B = 0. Similarly, in this
case the fundamental of the tangential field B is also zero
on the weak side of the electromagnet. We can further show
that the third harmonic for the strong side vanishes under the
same condition, and thus the next harmonic on the strong side
is the fifth. Thus the strong-side field is highly sinusoidal. This
would yield smoother operation if the motor were used in a
linear motor, e.g., for a maglev train.

The configuration of the winding for two-phase operation
is shown in Fig. 7. Here, phase 2 is spatially displaced by
90° from phase 1. Fig. 8 shows the stator magnetic flux lines
for this configuration as solved for via finite-element analysis
software. Although the electromagnet shown here is of finite
extent, we can see the resulting effectively single-sided flux
line pattern. We find, however, that the major disadvantage
is that the winding is less power efficient than those reported
earlier [14]. Thus this single-sided winding is not likely to be
used in power-sensitive applications in conventional machines.
However, in superconducting machines this winding pattern,
or others like it, may prove to be of interest.

V. CONCLUSION

The main purpose of this paper is to provide a general
design and analysis framework for linear permanent-magnet
machines. The models resulting from this analysis serve as
design tools for the development of high-resolution, power-
efficient positioning stages. To show the application of these
design tools we have presented the electromechanical charac-
teristics of an example magnetic levitator. The motor fields,
forces, and electrical terminal relation are given. We provide
experimental measurements of self-inductance and back emf.
In good agreement with the estimated values from the analyses,
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Fig. 7. Two-phase operation.
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Fig. 8.. Flux lines.

the experimental results confirm the validity of the design and
analysis framework.

Our framework is general in the sense that it can address
complex magnet arrays and winding patterns. For example, a
triangular winding pattern which has a primarily single-sided
magnetic field is developed and analyzed.

APPENDIX A
FIELD CALCULATIONS

1) Field Due to Magnet: There is no free current in the
magnet region in Fig. 1. So, VxH=J; =0,and Vx B =
1oV x M. The vector potential satisfies the scalar Poisson
equation for y-component in the Cartesian coordinate

32

'B?Q'Ayn = _NO[V X Mn]y (35)

where M, is the nth order Fourier component of M. Taking
the curl of the nth magnetization term,

V x M, = —jkn Mgne 7%i,. (36)

Let Ay, = Aynp + Ayni, Where Ayn, is the particular part of
the solution and A, is the homogeneous part. Solving the
Poisson equation for 4,,,
Jlo
TMM'
n .
Since the potential must depend on hyperbolic trigonometric
function, the homogeneous solution inside the magnet region

Aynp = — 37

takes the following form by the general Laplace equation’s
solution

) i _— inh &0/
Aynh=(A§n+me>sm ko

ky, sinh &k, A
~. o - \sinhky(z' — A)
(Ay" s M”) smhk, A OY)
From the definition of the vector potential B =V x A
. d - L
Bzn = _5Z'Ayn = ]knAyn (39)
. 5 -~
on = T . 4
an arAyn ( 0)
Now from (40)
_ o, JBo cosh k'
Ban =k (Ay" * Mm") Sinh o A
~ Jto ~ \coshk,(z' — A)
— k[ AS, + 200, | 22T D) g
k”( yn T kn, ) sinh k, A “h

Evaluated at the boundaries (b) (z' = A) and {c) (2’ = 0),

the transfer relations are
-1 ib
sinh k,, A :| [4yn ]

[Bgn] . [cothknA
B;n " ;\—thnZ —COthknA A;n
cos.h nA—1 5
+ l: gégl})lllgnﬁ—leNOan'
sinh k, A

(42

Using the limits lim,4i.cothz = +1 and lim, 4.
sinhz = 4oo (The order of the signs is significant.), the
transfer relations for the half-infinite regions above the surface
(a) and below the surface (d) can be derived from (42)

Bgn = —7nA;n
Bgn = 'YnAzn-

43)
(44)

Since there is no impulse of field (i.e., no current doublet) ev-
erywhere, the vector potential is continuous at the boundaries

Az, = Ab 45)
je  _ Ad
Ay = Ay (46)
The equivalent surface current densities at the boundary (b)
and (c) are
Kgn =M, xi, = Mzne_jan/iy

o\ Y —jknz's
KS, = M, X (—ig) = —M,pe 9%i,.

(47
(48)

So, the boundary conditions for magnetic flux density are
~B, + Bl = poM. (49)
~BS, + By, = — oM. (50)

Solving the system of algebraic equations (42)-(46) and
(49) and (50) yields

5 Ho o~ Jbo A A
AZn = (m n — men) (1 — € Y )

Al = (—%’—Mn - MMM) (1—e ™). (52)

(1)
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From (39) and (44), and using (52), we find
Bl = ( "7];””0 M., + 20 Mm) (I—e™2) (53)
Tn

Bl = (_% 1., — 7’27;”0 Mm> (1—e2). (54)

Equations (52)—(54) are the field and potential solution for the
magnet at the boundary (d) as given in the body of the paper.

2) Field Due to Stator Current: In the stator current region,
the governing equation is

62 . N T
52‘5A po[Jfly = —poJyne™ "% (55)
A particular solution of the above Poisson equation is
~ NO ~
Aynp = Ejyn (56)

Through similar steps as in the magnet case, we obtain the
transfer relations for the stator current
» =1 AF
[Bf ] —t, {Cothk nl ST }{4@}
Bgn Sinh kT —cothk, T Agn
coshk r'—1
_ sinh k, I N’OJ
__cosh kﬂI‘ 1 k Yy
sinh k,, I n

(57

Transfer relations for the half-infinite reglon are as in the
magnet case

B, = -y AS, (58)
Bl =y AL (59)
Vector potential is continuous at the boundaries,
e — Af
AL, = AL, (60)
Ay = Al (61)

Since there is no surface current on surfaces of the stator, the
horizontal component of magnetic flux density is continuous

_‘ésn + Bi{n =
~Bg, + B, =0,

(62)
(63)

Solving the system of algebraic equations (57)~(63) yields

A, = ;T%jyn(l — e ) (64)
Al = %jyn(l — e, (65)
From (58) and with k2 = ~2
B, = jknAS, = ;’ZO Jyn (1 = &™) (66)
B, =~ Jyn (1 - 7). 67)

29,

Using the transfer relations for the air gap (11), we can
show the total fields due to the magnet and the stator current
are as given in (14) and (15).

3) Vector Potential Inside Stator: First, let us calculate the
vector potential at the stator boundary (e), MAg, (= MAS )

due to the magnet. From (11), BY, = k, coth k.o Azn -

smhk zg A’Z'n.’ and then,
A ot inh k,zg ~
Ay, = cosh kAl — Sm_kﬂng 68)
n

Using (52) and (54) and with some intermediate steps, vector
potential represented in the origin of nonprimed zyz-frame is

given by
m> em e

The vector potential at the stator boundaries due to stator
current are from (64) and (65)

" Mje .]N’O "~
= ———MZ -
Ayn < 2n " 2k,
e A,

celknzo (] — (69)

Sjie _ Sjh Ho
As, =Ar = Jyn(1—

T 2%z ).

(70)

Now we think of an imaginary boundary at z = X and
calculate the vector potential there. Let the boundary upper and
lower surfaces be (p) and (g), respectively. Vector potentials
due to the current in the upper section (X < z < T') and
the lower section (0 < z < X) come directly from (64) and
(65) as 4

S5, (= B4s,) = LS Ty (1= e E=0) (71
AL (= 5A48,) = 22 7 (1 - e X) (72)
Lyn_Lyn_ngn .

By superposition, the vector potential inside the stator at
@ = X is the sum of §AF  and $A7,

Si Ho 3 —n X
AP = = Jyn(2— e~

=00 e T2 (73

Thus, the total vector potential at (p) due to the magnet and
the current is from (69) and (73)

i Ly Jko -
A = (207, - I8y,
un ( 2%n " 2k, n)
. e—‘Yn(wo-l-F*X)ejknzo (]_ _ 6—’YnA)

+ ﬁg_jyn(Q —

o x
e —
2k2

e T=X0 (74

This result is used to calculate flux linkage and self-inductance
of the winding.
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